Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo...Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.展开更多
Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite s...Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.展开更多
A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogest...A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.展开更多
Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high ac...Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.展开更多
The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evoluti...The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evolution reaction(OER)pre-catalysts,such as transition metal chalcogenides(TMCs)and phosphides(TMPs),have evolved in recent years from traditional stable OER electrocatalysts,which show superior OER electrocatalytic performance compared with transition metal oxides(TMOs)or(oxy)hydroxides(TMOHs).In this feature article,we summarize recent advances in the development of TMCand TMP-based OER electrocatalysts,as well as approaches to improve the OER performance in terms of morphology,structure,composition,surface engineering,lattice-strained and in-situ transformation in the electrolysis process.In particular,the electrochemical stability of TMCs and TMPs in alkaline electrolytes and the evolution of morphology,structure and composition under OER conditions are discussed.In the last section,we discuss the challenges that need to be addressed in this specific area of research and the implications for further research.展开更多
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high...Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.展开更多
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano...Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.展开更多
The purpose of this study was to develop a quantitative structure–property relationship(QSPR) model based on the enhanced replacement method(ERM) and support vector machine(SVM) to predict the blood-to-brain barrier ...The purpose of this study was to develop a quantitative structure–property relationship(QSPR) model based on the enhanced replacement method(ERM) and support vector machine(SVM) to predict the blood-to-brain barrier partitioning behavior(log BB) of various drugs and organic compounds. Different molecular descriptors were calculated using a dragon package to represent the molecular structures of the compounds studied. The enhanced replacement method(ERM) was used to select the variables and construct the SVM model. The correlation coefficient, R^2, between experimental results and predicted log BB was 0.878 and 0.986, respectively. The results obtained demonstrated that, for all compounds, the log BB values estimated by SVM agreed with the experimental data, demonstrating that SVM is an effective method for model development, and can be used as a powerful chemometric tool in QSPR studies.展开更多
As one of the pentlandites,Fe5Ni4S8(FNS) based materials have attracted increasing attention due to their excellent catalytic properties and promising applicability.The control over the catalyst surface structure ofte...As one of the pentlandites,Fe5Ni4S8(FNS) based materials have attracted increasing attention due to their excellent catalytic properties and promising applicability.The control over the catalyst surface structure often benefits its heterogeneous catalytic activity.However,this has not been investigated for FNS materials at the nanoscale regarding the catalytic activity related to high-index facets.Herein,FNS nanoparticles(FNSNPs) with enclosed continuous tunable high-index facets were prepared and studied to clarify the relationship between the structure and catalytic functionality.The results suggested strong dependence between exposed facets of FNSNPs and their sizes.The decline in the average size to5.8 nm led to enclosing by high-index facets(422) and(511) to yield optimal electrocatalytic activities toward the hydrogen evolution reaction.The catalytic activity of FNSNPs was closely related to the surface energy of the main exposed facets.These findings clarified the relationship between high-index-facet and high-surface-energy FNSNPs,as promising approaches in crystal surface control engineering.展开更多
Objective: To study the effect of fluconzole derivatives from a side chain containing 4-substituted acyl piperazin-1-yl on antifungal activity. Methods: Fourteen title compounds were synthesized and confirmed by the e...Objective: To study the effect of fluconzole derivatives from a side chain containing 4-substituted acyl piperazin-1-yl on antifungal activity. Methods: Fourteen title compounds were synthesized and confirmed by the elementary analysis, 1HNMR and IR spectra. Five deep fungal strains and 3 shallow fungal strains were chosen as the experimental strains.Minimum inhibitory concentrations(MICs) of all title compounds were determined by the method recommended by the National Committee for Clinical Laboratory Standards (NCCLS) using RPMI 1640 test medium. Results: Among the 14 title compounds, 12 were first reported. The results of preliminary antifungal test showed that all the title compounds exhibited potent antifungal activities to a certain extent. The activity of 4 compounds were more than 4 times as high as that of fluconazole and equal to that of ketoconazole against Candida albicans in vitro(MIC 80 value≤0.125 μg/ml). Conclusion: Introduction of a side chain containing 4-substituted acyl piperazin-1-yl into the main part of fluconazole has important influence on antifungal activities of title compounds.展开更多
The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to ...The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.展开更多
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。
基金the funding support from the National Key Research and Development Program of China(2019YFE0123400)the Tianjin Distinguished Young Scholars Fund(20JCJQJC00260)+4 种基金the Major Science and Technology Project of Anhui Province(202203f07020007)the Anhui Conch Group Co.,Ltdthe“111”Project(B16027)the funding support from the Natural Science Foundation of China(22209081)the fellowship of China Postdoctoral Science Foundation(2021M690082)。
文摘Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.
基金financially supported by the National Natural Science Foundation of China(32201969)Natural Science Foundation of Henan Province(212300410297)+3 种基金Basic Research Plan of Higher Education School Key Scientific Research Project of Henan Province(21A550014)Doctoral Research Foundation of Zhengzhou University of Light Industry(2020BSJJ015)Program for Science and Technology Innovation Talents in Universities of Henan Province(20HASTIT037)Youth Talents Project of Henan Province(2020HYTP046).
文摘Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.
基金Funded by Chongqing Medical University Scientific Research Foundation
文摘A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.
基金sponsored by the National Natural Science Foundation China(32270115)National Key R&D Program of China(2018YFD0901102)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(SJLY2021015)K.C.Wong Magna Fund of Ningbo University。
文摘Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.
基金supported by the National Natural Science Foundation of China (No.22179014)the China Postdoctoral Science Foundation (No.2022 M720593)+2 种基金the Scientific Research Foundation of Chongqing University of Technology (Nos.2022ZDZ011,2022PYZ026)the Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission (No.KJQN202201127)the Project of Natural Science Foundation of Chongqing (No.2022NSCQ-MSX1123)。
文摘The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evolution reaction(OER)pre-catalysts,such as transition metal chalcogenides(TMCs)and phosphides(TMPs),have evolved in recent years from traditional stable OER electrocatalysts,which show superior OER electrocatalytic performance compared with transition metal oxides(TMOs)or(oxy)hydroxides(TMOHs).In this feature article,we summarize recent advances in the development of TMCand TMP-based OER electrocatalysts,as well as approaches to improve the OER performance in terms of morphology,structure,composition,surface engineering,lattice-strained and in-situ transformation in the electrolysis process.In particular,the electrochemical stability of TMCs and TMPs in alkaline electrolytes and the evolution of morphology,structure and composition under OER conditions are discussed.In the last section,we discuss the challenges that need to be addressed in this specific area of research and the implications for further research.
基金supported by National Natural Science Foundation of China(22090031,21922501,22109004)China Postdoctoral Science Foundation(2021M690319)。
文摘Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.
基金financial support through the SOL-CARE(Energy-065,2016–2019)project(JC-ENERGY-2014 first call)。
文摘Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.
文摘The purpose of this study was to develop a quantitative structure–property relationship(QSPR) model based on the enhanced replacement method(ERM) and support vector machine(SVM) to predict the blood-to-brain barrier partitioning behavior(log BB) of various drugs and organic compounds. Different molecular descriptors were calculated using a dragon package to represent the molecular structures of the compounds studied. The enhanced replacement method(ERM) was used to select the variables and construct the SVM model. The correlation coefficient, R^2, between experimental results and predicted log BB was 0.878 and 0.986, respectively. The results obtained demonstrated that, for all compounds, the log BB values estimated by SVM agreed with the experimental data, demonstrating that SVM is an effective method for model development, and can be used as a powerful chemometric tool in QSPR studies.
基金financially supported by the Scientific and Technological Development Program of Jilin Province(Grant No.20220201138GX)the Project for Self-innovation Ability Construction of Jilin Province Development and Reform Commission(Grant No.2021C026)the Project Supported by Graduate Innovation Fund of Jilin University。
文摘As one of the pentlandites,Fe5Ni4S8(FNS) based materials have attracted increasing attention due to their excellent catalytic properties and promising applicability.The control over the catalyst surface structure often benefits its heterogeneous catalytic activity.However,this has not been investigated for FNS materials at the nanoscale regarding the catalytic activity related to high-index facets.Herein,FNS nanoparticles(FNSNPs) with enclosed continuous tunable high-index facets were prepared and studied to clarify the relationship between the structure and catalytic functionality.The results suggested strong dependence between exposed facets of FNSNPs and their sizes.The decline in the average size to5.8 nm led to enclosing by high-index facets(422) and(511) to yield optimal electrocatalytic activities toward the hydrogen evolution reaction.The catalytic activity of FNSNPs was closely related to the surface energy of the main exposed facets.These findings clarified the relationship between high-index-facet and high-surface-energy FNSNPs,as promising approaches in crystal surface control engineering.
文摘Objective: To study the effect of fluconzole derivatives from a side chain containing 4-substituted acyl piperazin-1-yl on antifungal activity. Methods: Fourteen title compounds were synthesized and confirmed by the elementary analysis, 1HNMR and IR spectra. Five deep fungal strains and 3 shallow fungal strains were chosen as the experimental strains.Minimum inhibitory concentrations(MICs) of all title compounds were determined by the method recommended by the National Committee for Clinical Laboratory Standards (NCCLS) using RPMI 1640 test medium. Results: Among the 14 title compounds, 12 were first reported. The results of preliminary antifungal test showed that all the title compounds exhibited potent antifungal activities to a certain extent. The activity of 4 compounds were more than 4 times as high as that of fluconazole and equal to that of ketoconazole against Candida albicans in vitro(MIC 80 value≤0.125 μg/ml). Conclusion: Introduction of a side chain containing 4-substituted acyl piperazin-1-yl into the main part of fluconazole has important influence on antifungal activities of title compounds.
基金supported by the National Natural Science Foundation of China(22178258,21975181)。
文摘The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.