Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0...Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.展开更多
We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl...We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl River Mouth basin(PRMB) in the north of the South China Sea by using data such as cores, thin sections, X-ray diffraction of whole-rock, and calcite cement carbon and oxygen isotopes. The lithology of the calcareous insulating layers in the study area is mainly composed of the terrigenous clastic bioclastic limestone and a small amount of fine-grained calcareous sandstone. On this basis, two genetic models of calcareous insulating layers are established, including the evaporation seawater genetic model and shallow burial meteoric water genetic model. The calcareous insulating layers of the evaporation seawater genetic model developed in the foreshore subfacies, mainly at the top of the 1-1 strata and 1-3 strata. The calcareous insulating layers of the shallow burial meteoric water genetic model developed in the backshore subfacies, primarily in the 1-2 strata.展开更多
Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subduct...Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subducting slabs.For the purpose to moderate the influence of such artificial discontinuity, we construct a 2D thermal model for subduction zones with a velocity boundary layer,within which the velocities decrease linearly with the distance from the interfaces of slabs.Temperatures are calculated展开更多
The nitrogen (N) metabolic experiments were made to estimate separately amino acid requirements of 4348 weeks old layers for maintenance, for protein accretion to estabolish models to estimate digestible amino acid re...The nitrogen (N) metabolic experiments were made to estimate separately amino acid requirements of 4348 weeks old layers for maintenance, for protein accretion to estabolish models to estimate digestible amino acid requirements. The regression relationship of nitrogen retention vs amino acid intake was estimated for each amino acid by giving, at rate of N intake of 091, 052, 015 and 0007gkg-1 body-weight (W075) per d, the semi-synthetic diets was made specially deficient in one amino acid. From the regression coefficients, it was calculated that, for the accretion of 1 g protein, the dietary digestible amino acid requirements were (mg) Thr 631, Val 1004, Met 399, Ile 886, Leu 1143, Phe 632, Lys 870, His 205, Arg 879, Trp 214, Met+Cys 776, and Phe+Tyr 1143. Daily amino acid requirements for N equilibrium were estimated to be (mgkg-1W075 per day) Thr 506, Val 747, Met 303, ILe 667 Leu 814, Phe 448, Lys 605 His 147, Arg 739 ,Trp 173, Met+Cys 586, and Phe+Tyr 839 The dietary degestible amino acid patterns for protein accretion and N equilibrium were also proposed. The models of estimating digestible amino acid requirements for the different productions were developed.展开更多
Intra-body communication (IBC) is a technology using the human body as a transmission medium for electrical signals. Compared with the short distance wireless communication technologies, it has several novel character...Intra-body communication (IBC) is a technology using the human body as a transmission medium for electrical signals. Compared with the short distance wireless communication technologies, it has several novel characteristics. The modeling, simulation and implement of intra-body communication are reviewed. Firstly, the transfer function of the galvanic coupling IBC is deduced, and the in vivo measurements results and the corresponding mathematical simulations results based on the proposed transfer function are discussed. Secondly, a finite-element method for modeling the whole human body is introduced, and the simulation results of the galvanic coupling IBC based on the whole human body and the corresponding in vivo measurement results are discussed. Finally, the implement methods of the intra-body communication as well as a novel IBC system based on Mach-Zehnder EO modulator are introduced and analyzed, while some conclusions are achieved.展开更多
基金Projects(52074299,41941018)supported by the National Natural Science Foundation of ChinaProject(2023JCCXSB02)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.
基金Project(51534006)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB239005)supported by the National Key Basic Research and Development,ChinaProjects(41772150,51674211)supported by the National Natural Science Foundation of China。
文摘We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl River Mouth basin(PRMB) in the north of the South China Sea by using data such as cores, thin sections, X-ray diffraction of whole-rock, and calcite cement carbon and oxygen isotopes. The lithology of the calcareous insulating layers in the study area is mainly composed of the terrigenous clastic bioclastic limestone and a small amount of fine-grained calcareous sandstone. On this basis, two genetic models of calcareous insulating layers are established, including the evaporation seawater genetic model and shallow burial meteoric water genetic model. The calcareous insulating layers of the evaporation seawater genetic model developed in the foreshore subfacies, mainly at the top of the 1-1 strata and 1-3 strata. The calcareous insulating layers of the shallow burial meteoric water genetic model developed in the backshore subfacies, primarily in the 1-2 strata.
文摘Kinematic models compute the temperature distribution by prescribing a constant convergent velocity for the subducting slab,resulting in an artificial velocity discontinuity,which may accelerate the heating of subducting slabs.For the purpose to moderate the influence of such artificial discontinuity, we construct a 2D thermal model for subduction zones with a velocity boundary layer,within which the velocities decrease linearly with the distance from the interfaces of slabs.Temperatures are calculated
文摘The nitrogen (N) metabolic experiments were made to estimate separately amino acid requirements of 4348 weeks old layers for maintenance, for protein accretion to estabolish models to estimate digestible amino acid requirements. The regression relationship of nitrogen retention vs amino acid intake was estimated for each amino acid by giving, at rate of N intake of 091, 052, 015 and 0007gkg-1 body-weight (W075) per d, the semi-synthetic diets was made specially deficient in one amino acid. From the regression coefficients, it was calculated that, for the accretion of 1 g protein, the dietary digestible amino acid requirements were (mg) Thr 631, Val 1004, Met 399, Ile 886, Leu 1143, Phe 632, Lys 870, His 205, Arg 879, Trp 214, Met+Cys 776, and Phe+Tyr 1143. Daily amino acid requirements for N equilibrium were estimated to be (mgkg-1W075 per day) Thr 506, Val 747, Met 303, ILe 667 Leu 814, Phe 448, Lys 605 His 147, Arg 739 ,Trp 173, Met+Cys 586, and Phe+Tyr 839 The dietary degestible amino acid patterns for protein accretion and N equilibrium were also proposed. The models of estimating digestible amino acid requirements for the different productions were developed.
文摘Intra-body communication (IBC) is a technology using the human body as a transmission medium for electrical signals. Compared with the short distance wireless communication technologies, it has several novel characteristics. The modeling, simulation and implement of intra-body communication are reviewed. Firstly, the transfer function of the galvanic coupling IBC is deduced, and the in vivo measurements results and the corresponding mathematical simulations results based on the proposed transfer function are discussed. Secondly, a finite-element method for modeling the whole human body is introduced, and the simulation results of the galvanic coupling IBC based on the whole human body and the corresponding in vivo measurement results are discussed. Finally, the implement methods of the intra-body communication as well as a novel IBC system based on Mach-Zehnder EO modulator are introduced and analyzed, while some conclusions are achieved.