With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 pre...With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.展开更多
天临空一体协同遥感体系综合利用现代信息技术,聚合天、临、空各域多源异构数据,实现精准应急服务与指挥决策,系统庞大、结构复杂,缺乏体系结构建模与仿真方面的研究。基于天临空一体协同遥感体系结构特点,构建了体系最小原型系统;借鉴D...天临空一体协同遥感体系综合利用现代信息技术,聚合天、临、空各域多源异构数据,实现精准应急服务与指挥决策,系统庞大、结构复杂,缺乏体系结构建模与仿真方面的研究。基于天临空一体协同遥感体系结构特点,构建了体系最小原型系统;借鉴DoDAF(department of defense architecture framework)以及ABM(activity based methodology)方法完成了最小原型系统结构建模,分析了天临空一体协同遥感体系作战资源流程与信息交互方式、功能结构划分与系统接口表述以及在应急信息支援模式以及常规遥感观测模式下的具体应用。验证试验结果表明:模型构建合理,可为体系集成仿真与效能评估奠定基础,为天临空一体协同遥感体系研究与优化设计提供参考。展开更多
文摘With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.
文摘天临空一体协同遥感体系综合利用现代信息技术,聚合天、临、空各域多源异构数据,实现精准应急服务与指挥决策,系统庞大、结构复杂,缺乏体系结构建模与仿真方面的研究。基于天临空一体协同遥感体系结构特点,构建了体系最小原型系统;借鉴DoDAF(department of defense architecture framework)以及ABM(activity based methodology)方法完成了最小原型系统结构建模,分析了天临空一体协同遥感体系作战资源流程与信息交互方式、功能结构划分与系统接口表述以及在应急信息支援模式以及常规遥感观测模式下的具体应用。验证试验结果表明:模型构建合理,可为体系集成仿真与效能评估奠定基础,为天临空一体协同遥感体系研究与优化设计提供参考。