期刊文献+
共找到67,145篇文章
< 1 2 250 >
每页显示 20 50 100
Antimicrobial resistance crisis:could artificial intelligence be the solution? 被引量:1
1
作者 Guang-Yu Liu Dan Yu +4 位作者 Mei-Mei Fan Xu Zhang Ze-Yu Jin Christoph Tang Xiao-Fen Liu 《Military Medical Research》 2025年第1期72-95,共24页
Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The ... Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship. 展开更多
关键词 Antibiotic artificial intelligence(AI) Clinical development Machine learning(ML) Antimicrobial peptide Phage therapy Antibiotic stewardship
在线阅读 下载PDF
Evaluation and Regulation of Medical Artificial Intelligence Applications in China
2
作者 Mao You Yue Xiao +3 位作者 Han Yao Xue-Qing Tian Li-Wei Shi Ying-Peng Qiu 《Chinese Medical Sciences Journal》 2025年第1期3-8,I0002,共7页
Amid the global wave of digital economy,China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support,while facing multifaceted evaluation and regul... Amid the global wave of digital economy,China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support,while facing multifaceted evaluation and regulatory challenges.The dynamic algorithm evolution undermines the consistency of assessment criteria,multimodal systems lack unified evaluation metrics,and conflicts persist between data sharing and privacy protection.To address these issues,the China National Health Development Research Center has established a value assessment framework for artificial intelligence medical technologies,formulated the country's first technical guideline for clinical evaluation,and validated their practicality through scenario-based pilot studies.Furthermore,this paper proposes introducing a"regulatory sandbox"model to test technical compliance in controlled environments,thereby balancing innovation incentives with risk governance. 展开更多
关键词 regulatory sandbox medical artificial intelligence health technology assessment
在线阅读 下载PDF
Cloud-magnetic resonance imaging system:In the era of 6G and artificial intelligence
3
作者 Yirong Zhou Yanhuang Wu +6 位作者 Yuhan Su Jing Li Jianyu Cai Yongfu You Jianjun Zhou Di Guo Xiaobo Qu 《Magnetic Resonance Letters》 2025年第1期52-63,共12页
Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth... Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency. 展开更多
关键词 Magnetic resonance imaging Cloud computing 6G bandwidth artificial intelligence Edge computing Federated learning Blockchain
在线阅读 下载PDF
A review of artificial intelligence applications in high-speed railway systems 被引量:2
4
作者 Xuehan Li Minghao Zhu +3 位作者 Boyang Zhang Xiaoxuan Wang Zha Liu Liang Han 《High-Speed Railway》 2024年第1期11-16,共6页
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e... In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions. 展开更多
关键词 High-speed railway artificial intelligence intelligent distribution intelligent control intelligent scheduling
在线阅读 下载PDF
A quantitative study of disruptive technology policy texts:An example of China’s artificial intelligence policy 被引量:1
5
作者 Ying Zhou Linzhi Yan Xiao Liu 《Journal of Data and Information Science》 CSCD 2024年第3期155-180,共26页
Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s arti... Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies. 展开更多
关键词 Disruptive technologies artificial intelligence SYNERGIES Policy tools Thematic evolution
在线阅读 下载PDF
Advanced Design of Soft Robots with Artificial Intelligence 被引量:1
6
作者 Ying Cao Bingang Xu +1 位作者 Bin Li Hong Fu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期474-521,共48页
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump... In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward. 展开更多
关键词 Soft robotic systems artificial intelligence Design tactics Review and perspective
在线阅读 下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
7
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 artificial intelligence Radiomics Feature extraction Feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
在线阅读 下载PDF
Research on simulation of gun muzzle flow field empowered by artificial intelligence 被引量:1
8
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 Muzzle flow field artificial intelligence Deep learning Data-physical fusion driven Shock wave
在线阅读 下载PDF
Artificial Intelligence Based Multi-Scenario mmWave Channel Modeling for Intelligent High-Speed Train Communications
9
作者 Zhang Mengjiao Liu Yu +4 位作者 Huang Jie He Ruisi Zhang Jingfan Yu Chongyang Wang Chengxiang 《China Communications》 SCIE CSCD 2024年第3期260-272,共13页
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr... A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios. 展开更多
关键词 artificial intelligence channel characteristic prediction HST channel millimeter wave scenario classification
在线阅读 下载PDF
What benefit can be obtained from magnetic resonance imaging diagnosis with artificial intelligence in prostate cancer compared with clinical assessments?
10
作者 Li-Tao Zhao Zhen-Yu Liu +4 位作者 Wan-Fang Xie Li-Zhi Shao Jian Lu Jie Tian Jian-Gang Liu 《Military Medical Research》 SCIE CAS CSCD 2024年第2期268-286,共19页
The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized ... The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets. 展开更多
关键词 Clinically significant prostate cancer Adverse pathology Radiomics quality score artificial intelligence Magnetic resonance imaging
在线阅读 下载PDF
A Special Issue:“Artificial Intelligence Applied in New-Type Power System”for Global Energy Interconnection
11
作者 Xueping Pan Xiangyu Kong 《Global Energy Interconnection》 EI CSCD 2024年第3期I0002-I0003,共2页
In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application ... In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application of latest AI technology still has many technical difficulties to be solved.In the process of upgrading from the traditional power system to the new-type power system,AC grids,DC grids and micro grids coexist.In addition,there are huge amount of power equipment and electronic devices,and the coupling relationship is very complicated.Moreover,the high proportion of clean energy and flexible loads connected to the grid leads to the enhancement of the stochastic characteristics of the system.And short-term and ultra-short-term forecasts are much more difficult.Therefore,the editorial office of Global Energy Interconnection has planned the special issue of“Artificial Intelligence Applied in New-Type Power System”. 展开更多
关键词 artificial POWER Type
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
12
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
Using artificial intelligence to document the hidden RNA virosphere
13
作者 Xin Hou 《四川生理科学杂志》 2024年第10期2345-2345,共1页
Current metagenomic tools can fail to identify highly divergent RNA viruses.We developed a deep learning algorithm,termed LucaProt,to discover highly divergent RNA-dependent RNA polymerase(RdRP)sequences in 10,487 met... Current metagenomic tools can fail to identify highly divergent RNA viruses.We developed a deep learning algorithm,termed LucaProt,to discover highly divergent RNA-dependent RNA polymerase(RdRP)sequences in 10,487 metatranscriptomes generated from diverse global ecosystems.LucaProt integrates both sequence and predicted structural information,enabling the accurate detection of RdRP sequences.Using this approach,we identified 161,979 potential RNA virus species and 180 RNA virus supergroups,including many previously poorly studied groups,as well as RNA virus genomes of exceptional length(up to 47,250 nucleotides)and genomic complexity. 展开更多
关键词 artificial exceptional INTEGRATE
在线阅读 下载PDF
The Artificial Intelligence-Enabled Medical Imaging:Today and Its Future 被引量:6
14
作者 史颖欢 王乾 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期71-75,共5页
Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the bac... Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future.In this article,we review the recent progress of AI-enabled medical imaging.Firstly,we briefly review the background about AI in its way of evolution.Then,we discuss the recent successes of AI in different medical imaging tasks,especially in image segmentation,registration,detection and recognition.Also,we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario,which includes lung nodule in chest CT,neuroimaging,mammography,and etc.Finally,we report the way of human-machine interaction.We believe that,in the future,AI will not only change the traditional way of medical imaging,but also improve the clinical routines of medical care and enable many aspects of the medical society. 展开更多
关键词 MEDICAL imaging artificial intelligence deep learning IMAGE SEGMENTATION IMAGE REGISTRATION IMAGE detection IMAGE recognition
在线阅读 下载PDF
Ontology: Footstone for Strong Artificial Intelligence 被引量:1
15
作者 杨啸林 王哲 +1 位作者 潘虹洁 朱彦 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第4期277-280,共4页
In the past ten years,the application of artificial intelligence(AI)in biomedicine has increased rapidly,which roots in the rapid growth of biomedicine data,the improvement of computing performance,and the development... In the past ten years,the application of artificial intelligence(AI)in biomedicine has increased rapidly,which roots in the rapid growth of biomedicine data,the improvement of computing performance,and the development of deep learning methods.At present,there are great difficulties in front of AI for solving complex and comprehensive medical problems.Ontology can play an important role in how to make machines have stronger intelligence and has wider applications in the medical field.By using ontologies,(meta)data can be standardized so that data quality is improved and more data analysis methods can be introduced,data integration can be supported by the semantics relationships which are specified in ontologies,and effective logic expression in nature language can be better understood by machine.This can be a pathway to stronger AI.Under this circumstance,the Chinese Conference on Biomedical Ontology and Terminology was held in Beijing in autumn 2019,with the theme“Making Machine Understand Data”.The success of this conference further improves the development of ontology in the field of biomedical information in China,and will promote the integration of Chinese ontology research and application with the international standards and the findability,accessibility,interoperability,and reusability(FAIR)Data Principle. 展开更多
关键词 ONTOLOGY artificial intelligence BIOMEDICINE big data
在线阅读 下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
16
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 artificial intelligence Emerging devices artificial sensory neurons Spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
The Next Era:Flourish of National Health Care & Medicine with the World Leading Artificial Intelligence
17
作者 吴健 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期69-70,共2页
MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gat... MODERN medical diagnosis and practice heavily rely on biological data and information from patients’ body.The progress of biomedical sensor,material and mathematical technology provided ever-increasing methods to gather data.While providing more choices and more comprehensive picture of patients’ conditions to doctors and practitioners,these progresses also require more labor efforts to read,analyze,and make decisions based on those data.It is very difficult for the medical human resources to grow at a speed that matches such need for diagnosis-related expert knowledge.The shortage of expertise has caused long waiting time for check report and fatal misjudged diagnosis in public health system,and it will compromise our ability to move towards a more precise,more personalized and more efficient future of medicine. 展开更多
关键词 The NEXT ERA Flourish of NATIONAL Health Care MEDICINE with the World LEADING artificial intelligence
在线阅读 下载PDF
Artificial Intelligence in Healthcare and Medicine:Promises,Ethical Challenges and Governance 被引量:10
18
作者 关健 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第2期76-83,共8页
Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.Howeve... Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.However,AI also raises several challenges and ethical concerns.In this article,the author investigates and discusses three aspects of AI in medicine and healthcare:the application and promises of AI,special ethical concerns pertaining to AI in some frontier fields,and suggestive ethical governance systems.Despite great potentials of frontier AI research and development in the field of medical care,the ethical challenges induced by its applications has put forward new requirements for governance.To ensure “trustworthy” AI applications in healthcare and medicine,the creation of an ethical global governance framework and system as well as special guidelines for frontier AI applications in medicine are suggested.The most important aspects include the roles of governments in ethical auditing and the responsibilities of stakeholders in the ethical governance system. 展开更多
关键词 artificial intelligence medical ETHICS ETHICAL GOVERNANCE machine learning brain-computer interaction brain-inspired computer ROBOTS biohybrids
在线阅读 下载PDF
Artificial-intelligent-powered safety and efficiency improvement for controlling and scheduling in integrated railway systems
19
作者 Jun Liu Gehui Liu +1 位作者 Yu Wang Wanqiu Zhang 《High-Speed Railway》 2024年第3期172-179,共8页
The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation s... The multi-mode integrated railway system,anchored by the high-speed railway,caters to the diverse travel requirements both within and between cities,offering safe,comfortable,punctual,and eco-friendly transportation services.With the expansion of the railway networks,enhancing the efficiency and safety of the comprehensive system has become a crucial issue in the advanced development of railway transportation.In light of the prevailing application of artificial intelligence technologies within railway systems,this study leverages large model technology characterized by robust learning capabilities,efficient associative abilities,and linkage analysis to propose an Artificial-intelligent(AI)-powered railway control and dispatching system.This system is elaborately designed with four core functions,including global optimum unattended dispatching,synergetic transportation in multiple modes,high-speed automatic control,and precise maintenance decision and execution.The deployment pathway and essential tasks of the system are further delineated,alongside the challenges and obstacles encountered.The AI-powered system promises a significant enhancement in the operational efficiency and safety of the composite railway system,ensuring a more effective alignment between transportation services and passenger demands. 展开更多
关键词 High-speed railway Multi-mode railway system artificial intelligence Large-scale mode system framework Safety and efficiency improvement
在线阅读 下载PDF
6G Visions:Mobile Ultra-Broadband,Super Internet-of-Things,and Artificial Intelligence 被引量:62
20
作者 Lin Zhang Ying-Chang Liang Dusit Niyato 《China Communications》 SCIE CSCD 2019年第8期1-14,共14页
With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way fo... With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions. 展开更多
关键词 6G visions THZ COMMUNICATIONS SYMBIOTIC RADIO satellite-assisted COMMUNICATIONS artificial intelligence machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部