期刊文献+
共找到219,011篇文章
< 1 2 250 >
每页显示 20 50 100
改进Deep Q Networks的交通信号均衡调度算法
1
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
2
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
3
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
4
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
5
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Multi-QoS routing algorithm based on reinforcement learning for LEO satellite networks 被引量:1
6
作者 ZHANG Yifan DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第1期37-47,共11页
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa... Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link. 展开更多
关键词 low Earth orbit(LEO)satellite network reinforcement learning multi-quality of service(QoS) routing algorithm
在线阅读 下载PDF
Dual networks with hierarchical attention for fine-grained image classification
7
作者 YANG Tao WANG Gaihua 《中国科学院大学学报(中英文)》 北大核心 2025年第6期806-813,共8页
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi... In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better. 展开更多
关键词 dual network(DNet) fine-grained image classification hierarchical attention features
在线阅读 下载PDF
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
8
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
9
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 Thermally conductive performance Primary-secondary thermally conductive networks network density Polymer-bonded explosives
在线阅读 下载PDF
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
10
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
11
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Delay bounded routing with the maximum belief degree for dynamic uncertain networks
12
作者 MA Ji KANG Rui +3 位作者 LI Ruiying ZHANG Qingyuan LIU Liang WANG Xuewang 《Journal of Systems Engineering and Electronics》 2025年第1期127-138,共12页
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo... Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds. 展开更多
关键词 dynamic uncertain network uncertainty theory epistemic uncertainty delay bounded routing maximum belief degree
在线阅读 下载PDF
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
13
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(UAV)swarm network UAV clustering MOBILITY virtual tube.
在线阅读 下载PDF
DEF-based energy consumption balancing optimization for LEO satellite networks
14
作者 DI Hang DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第4期922-931,共10页
In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the... In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network. 展开更多
关键词 low Earth orbit(LEO)satellite networks distance energy factor(DEF) energy consumption balancing flow trans-mission optimization.
在线阅读 下载PDF
基于Deep Q Networks的机械臂推动和抓握协同控制 被引量:3
15
作者 贺道坤 《现代制造工程》 CSCD 北大核心 2021年第7期23-28,共6页
针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映... 针对目前机械臂在复杂场景应用不足以及推动和抓握自主协同控制研究不多的现状,发挥深度Q网络(Deep Q Networks)无规则、自主学习优势,提出了一种基于Deep Q Networks的机械臂推动和抓握协同控制方法。通过2个完全卷积网络将场景信息映射至推动或抓握动作,经过马尔可夫过程,采取目光长远奖励机制,选取最佳行为函数,实现对复杂场景机械臂推动和抓握动作的自主协同控制。在仿真和真实场景实验中,该方法在复杂场景中能够通过推动和抓握自主协同操控实现对物块的快速抓取,并获得更高的动作效率和抓取成功率。 展开更多
关键词 机械臂 抓握 推动 深度Q网络(Deep Q networks) 协同控制
在线阅读 下载PDF
Overlay Networks在军事通信中的应用模型
16
作者 孙晓 王晖 《计算机应用与软件》 CSCD 北大核心 2008年第8期161-162,169,共3页
首先简单介绍了Overlay Networks,然后分析了当前军事通信的弊端和未来发展趋势,提出采用Overlay Networks的思想,提升军事通信网络的性能,为未来信息化战争提供网络基础架构。最后分析了该应用模型的优点和亟待解决的几个问题。
关键词 OVERLAY networks 军事通信网络 GIG 数据链
在线阅读 下载PDF
Active Vibration Isolation of Micro-Manufacturing Platform Based on Neural Network 被引量:4
17
作者 ZHANG Chun-liang, MEI De-qing, CHEN Zi-chen (Institute of Production Engineering, Zhejiang University, Hangzhou 310027, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期67-68,共2页
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap... The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range. 展开更多
关键词 micro-manufacturing platform active vibration isolation bionic mechanics neural network
在线阅读 下载PDF
Diagnosabilities of exchanged hypercube networks under the pessimistic one-step diagnosis strategy 被引量:12
18
作者 Jiarong Liang Ying Huang Liangcheng Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期415-420,共6页
The exchanged hypercube EH(s, t) (where s ≥ 1 and t ≥ 1) is obtained by systematically reducing links from a regular hypercube Q,+t+l. One-step diagnosis of exchanged hypercubes which involves only one testi... The exchanged hypercube EH(s, t) (where s ≥ 1 and t ≥ 1) is obtained by systematically reducing links from a regular hypercube Q,+t+l. One-step diagnosis of exchanged hypercubes which involves only one testing phase during which processors test each other is discussed. The diagnosabilities of exchanged hypercubes are studied by using the pessimistic one-step diagno- sis strategy under two kinds of diagnosis models: the PMC model and the MM model. The main results presented here are the two proofs that the degree of diagnosability of the EH(s, t) under pessimistic one-step tl/tl fault diagnosis strategy is 2s where I ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the PMC model and that it is also 2s where 1 ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the MM* model. 展开更多
关键词 pessimistic diagnosis strategy exchanged hypercube network PMC model M M*model interconnection networks
在线阅读 下载PDF
Convolutional neural networks for time series classification 被引量:52
19
作者 Bendong Zhao Huanzhang Lu +2 位作者 Shangfeng Chen Junliang Liu Dongya Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期162-169,共8页
Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of ... Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of time series data: high dimensionality, large in data size and updating continuously. The deep learning techniques are explored to improve the performance of traditional feature-based approaches. Specifically, a novel convolutional neural network (CNN) framework is proposed for time series classification. Different from other feature-based classification approaches, CNN can discover and extract the suitable internal structure to generate deep features of the input time series automatically by using convolution and pooling operations. Two groups of experiments are conducted on simulated data sets and eight groups of experiments are conducted on real-world data sets from different application domains. The final experimental results show that the proposed method outperforms state-of-the-art methods for time series classification in terms of the classification accuracy and noise tolerance. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 CONVOLUTION Data mining Neural networks Time series Virtual reality
在线阅读 下载PDF
Recovery of coupled networks after cascading failures 被引量:7
20
作者 GAO Jiazi YIN Yongfeng +1 位作者 FIONDELLA Lance LIU Lijun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期650-657,共8页
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ... With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures. 展开更多
关键词 networks reliability interdependent networks recovery strategy cascading failure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部