As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mech...The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance.展开更多
Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been appl...Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness.展开更多
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particu...The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.展开更多
A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo...A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.展开更多
Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data predic...Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.展开更多
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially ...Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.展开更多
there are many teaching methods in current teaching procedures,such as the whole language teaching method;communicative teaching method;cooperation teaching method;situation teaching method;tasked-based teaching metho...there are many teaching methods in current teaching procedures,such as the whole language teaching method;communicative teaching method;cooperation teaching method;situation teaching method;tasked-based teaching method;content-based teaching method;competence-based teaching method multiple intelligence teaching method and other teaching methods.This article depicts the usage and comparison of the tasked-based teaching methods and situation teaching method in lexical learning in senior high language leaching.This article first talks about the definition and feature of these two teaching methods.Then through observing the students using different methods,I aim to compare these two methods in order to find out the similarities and differences between them when students are learning vocabulary.Making further study on the teaching methods,I would like to take good advantage of them in lexical learning in senior high classes in hope that we teachers can inspire students'thinking,arouse their desire,active the atmosphere and help them have a better and simpler command of the vocabulary they obtained in the class.展开更多
A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed ...A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.展开更多
An Introduction to Foreign Language Learning and Teaching is a book written by Keith Johnson which offers me a comprehensive interpretation of English learning and teaching.Thus,I will analyze these viewpoints from th...An Introduction to Foreign Language Learning and Teaching is a book written by Keith Johnson which offers me a comprehensive interpretation of English learning and teaching.Thus,I will analyze these viewpoints from the perspective of humanistic method about how to achieve effective English teaching and learning in college.展开更多
The goal of this research is to explore a more successful method for Mainland Chinese students to learn English.This newmethod will be illustrated by using the experiences of my daughter while a student in an elementa...The goal of this research is to explore a more successful method for Mainland Chinese students to learn English.This newmethod will be illustrated by using the experiences of my daughter while a student in an elementary school in the United States for oneyear.From the analysis of her learning experiences,the following conclusions were drawn:1) Immerse language learning is important tolanguage input.2) Phonics is an effective tool to improve reading for Chinese English展开更多
This paper covers an experimental study with the application of cooperative learning in the college English teaching to vocational students. It intends to find answers to the following questions: how do students coope...This paper covers an experimental study with the application of cooperative learning in the college English teaching to vocational students. It intends to find answers to the following questions: how do students cooperate in cooperative learning? Can cooperative learning promote students' learning? The author conducts an experiment by applying recording. Based on the above research work, this result has been reached: cooperative learning can promote students'mastering of vocabulary and grammar. The author would like to share her experiences with others in pedagogical studies of teaching vocational college students English.展开更多
Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.W...Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.We use transfer learning to improve its performance with pretrained models on largescale data.Audio is encoded using deep speech recognition networks with 500 hours’speech and video is encoded using convolutional neural networks with over 110,000 images.The extracted audio and visual features are fed into Long Short-Term Memory to train models respectively.Logistic regression and ensemble method are performed in decision level fusion.The experiment results indicate that 1)audio features extracted from deep speech recognition networks achieve better performance than handcrafted audio features;2)the visual emotion recognition obtains better performance than audio emotion recognition;3)the ensemble method gets better performance than logistic regression and prior knowledge from micro-F1 value further improves the performance and robustness,achieving accuracy of 67.00%for“happy”,54.90%for“an?gry”,and 51.69%for“sad”.展开更多
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon...The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.展开更多
The study aims at examining the results gained from the previous research that has been done on CMC. The paper presents abundant research to show that the application of high technologies has been greatly adopted to s...The study aims at examining the results gained from the previous research that has been done on CMC. The paper presents abundant research to show that the application of high technologies has been greatly adopted to second language learning around the world and positive feedback has been received. The paper takes a close look at how the high technology can cast profound influence on second language acquisition.展开更多
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金supported by the National Science and Technology Major Project of China(2016ZX05066005-001)Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)
文摘The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance.
文摘Reservoir identification and production prediction are two of the most important tasks in petroleum exploration and development.Machine learning(ML)methods are used for petroleum-related studies,but have not been applied to reservoir identification and production prediction based on reservoir identification.Production forecasting studies are typically based on overall reservoir thickness and lack accuracy when reservoirs contain a water or dry layer without oil production.In this paper,a systematic ML method was developed using classification models for reservoir identification,and regression models for production prediction.The production models are based on the reservoir identification results.To realize the reservoir identification,seven optimized ML methods were used:four typical single ML methods and three ensemble ML methods.These methods classify the reservoir into five types of layers:water,dry and three levels of oil(I oil layer,II oil layer,III oil layer).The validation and test results of these seven optimized ML methods suggest the three ensemble methods perform better than the four single ML methods in reservoir identification.The XGBoost produced the model with the highest accuracy;up to 99%.The effective thickness of I and II oil layers determined during the reservoir identification was fed into the models for predicting production.Effective thickness considers the distribution of the water and the oil resulting in a more reasonable production prediction compared to predictions based on the overall reservoir thickness.To validate the superiority of the ML methods,reference models using overall reservoir thickness were built for comparison.The models based on effective thickness outperformed the reference models in every evaluation metric.The prediction accuracy of the ML models using effective thickness were 10%higher than that of reference model.Without the personal error or data distortion existing in traditional methods,this novel system realizes rapid analysis of data while reducing the time required to resolve reservoir classification and production prediction challenges.The ML models using the effective thickness obtained from reservoir identification were more accurate when predicting oil production compared to previous studies which use overall reservoir thickness.
基金supported by the National Natural Science Foundation of China (Grant No. 11675054)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213)the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000)。
文摘The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
基金support from the Ministry of Education(MOE) Singapore Tier 1 (RG8/20)。
文摘A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.
基金the National Natural Science Foundation of China(22108307)the Natural Science Foundation of Shandong Province(ZR2020KB006)the Outstanding Youth Fund of Shandong Provincial Natural Science Foundation(ZR2020YQ17).
文摘Acquiring accurate molecular-level information about petroleum is crucial for refining and chemical enterprises to implement the“selection of the optimal processing route”strategy.With the development of data prediction systems represented by machine learning,it has become possible for real-time prediction systems of petroleum fraction molecular information to replace analyses such as gas chromatography and mass spectrometry.However,the biggest difficulty lies in acquiring the data required for training the neural network.To address these issues,this work proposes an innovative method that utilizes the Aspen HYSYS and full two-dimensional gas chromatography-time-of-flight mass spectrometry to establish a comprehensive training database.Subsequently,a deep neural network prediction model is developed for heavy distillate oil to predict its composition in terms of molecular structure.After training,the model accurately predicts the molecular composition of catalytically cracked raw oil in a refinery.The validation and test sets exhibit R2 values of 0.99769 and 0.99807,respectively,and the average relative error of molecular composition prediction for raw materials of the catalytic cracking unit is less than 7%.Finally,the SHAP(SHapley Additive ExPlanation)interpretation method is used to disclose the relationship among different variables by performing global and local weight comparisons and correlation analyses.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0401000 and2017YFA0302901the National Basic Research Program of China under Grant No 2015CB921000+2 种基金the National Natural Science Foundation of China under Grant Nos 11574371,11774399 and 11774398the Beijing Natural Science Foundation(Z180008)the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000
文摘Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.
文摘there are many teaching methods in current teaching procedures,such as the whole language teaching method;communicative teaching method;cooperation teaching method;situation teaching method;tasked-based teaching method;content-based teaching method;competence-based teaching method multiple intelligence teaching method and other teaching methods.This article depicts the usage and comparison of the tasked-based teaching methods and situation teaching method in lexical learning in senior high language leaching.This article first talks about the definition and feature of these two teaching methods.Then through observing the students using different methods,I aim to compare these two methods in order to find out the similarities and differences between them when students are learning vocabulary.Making further study on the teaching methods,I would like to take good advantage of them in lexical learning in senior high classes in hope that we teachers can inspire students'thinking,arouse their desire,active the atmosphere and help them have a better and simpler command of the vocabulary they obtained in the class.
文摘A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence.
文摘An Introduction to Foreign Language Learning and Teaching is a book written by Keith Johnson which offers me a comprehensive interpretation of English learning and teaching.Thus,I will analyze these viewpoints from the perspective of humanistic method about how to achieve effective English teaching and learning in college.
文摘The goal of this research is to explore a more successful method for Mainland Chinese students to learn English.This newmethod will be illustrated by using the experiences of my daughter while a student in an elementary school in the United States for oneyear.From the analysis of her learning experiences,the following conclusions were drawn:1) Immerse language learning is important tolanguage input.2) Phonics is an effective tool to improve reading for Chinese English
文摘This paper covers an experimental study with the application of cooperative learning in the college English teaching to vocational students. It intends to find answers to the following questions: how do students cooperate in cooperative learning? Can cooperative learning promote students' learning? The author conducts an experiment by applying recording. Based on the above research work, this result has been reached: cooperative learning can promote students'mastering of vocabulary and grammar. The author would like to share her experiences with others in pedagogical studies of teaching vocational college students English.
文摘Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.We use transfer learning to improve its performance with pretrained models on largescale data.Audio is encoded using deep speech recognition networks with 500 hours’speech and video is encoded using convolutional neural networks with over 110,000 images.The extracted audio and visual features are fed into Long Short-Term Memory to train models respectively.Logistic regression and ensemble method are performed in decision level fusion.The experiment results indicate that 1)audio features extracted from deep speech recognition networks achieve better performance than handcrafted audio features;2)the visual emotion recognition obtains better performance than audio emotion recognition;3)the ensemble method gets better performance than logistic regression and prior knowledge from micro-F1 value further improves the performance and robustness,achieving accuracy of 67.00%for“happy”,54.90%for“an?gry”,and 51.69%for“sad”.
基金the financial support from the China Scholarship Council(CSC)(No.202207550010)。
文摘The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.
文摘The study aims at examining the results gained from the previous research that has been done on CMC. The paper presents abundant research to show that the application of high technologies has been greatly adopted to second language learning around the world and positive feedback has been received. The paper takes a close look at how the high technology can cast profound influence on second language acquisition.