In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups o...In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.展开更多
Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of wat...Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.展开更多
Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time ...Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology param...The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology parameter on final grain size of AISI H13 hot work tool steel during multistage deformation. It has been verified that the technology scheme for refining the final grain size can be determined rapidly and efficiently with the aid of the uniform design. The results show that the deformation parameters and the intermission time after deformation of the first stage affect the final grain size remarkably. For AISI H13 hot work tool steel, the final grain size can be refined notably when deformation parameters for the first stage are set as follows: a deformation temperature range of 1?025 1?085 ℃; a true strain of above 0.26 and the interpass time between the first and the second stage of deformation less than 10 s.展开更多
The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal ...The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.展开更多
轨道梁作为跨座式单轨交通三大核心技术之一,其核心技术的创新与发展一直都是制约我国单轨交通发展的重要因素之一。结合“新型25 m PC轨道梁优化设计与制造工艺”课题,自主开发了“PC轨道梁配筋计算程序”和“PC轨道梁标准定型化设计...轨道梁作为跨座式单轨交通三大核心技术之一,其核心技术的创新与发展一直都是制约我国单轨交通发展的重要因素之一。结合“新型25 m PC轨道梁优化设计与制造工艺”课题,自主开发了“PC轨道梁配筋计算程序”和“PC轨道梁标准定型化设计软件”,并设计完成了跨座式单轨交通新型25 m PC轨道梁。通过智能软件自动生成25 m PC轨道梁的预应力钢筋和普通钢筋布置图,对轨道梁进行足尺25 m PC轨道梁静载、扭转、开裂、300万次疲劳和破坏试验验证。为验证新型25 m PC轨道梁优化设计与软件计算的正确性,将其试验数据与自制软件计算出的数据和理论数据进行对比。结果表明:软件自动设计的轨道梁,最大竖向挠度实测值为21.75 mm,校验系数为0.89,挠跨比为1/1122,而水平挠度实测值为2.36 mm,校验系数为0.72,满足规范要求;结合偏心及中心加载两种工况下试验结果,梁体应力差值在-0.51~0.61 MPa之间,扭转对直梁影响较小;开裂试验中,实测开裂荷载值为947 kN,实测重裂荷载为707 kN,由此得到梁体实际有效预应力975.26 MPa,实测值略大于设计有效预应力972.26 MPa,上述数据说明自动绘制的配筋图可以用于实际工程中。开发的智能软件对跨座式单轨交通轨道梁的智能建造提供技术支撑。展开更多
基金Project(50304010) supported by the National Natural Science Foundation of China
文摘In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.
文摘Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.
基金This work was supported by the National Natural Science Foundation of China(72171231).
文摘Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 75 0 5 3)
文摘The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology parameter on final grain size of AISI H13 hot work tool steel during multistage deformation. It has been verified that the technology scheme for refining the final grain size can be determined rapidly and efficiently with the aid of the uniform design. The results show that the deformation parameters and the intermission time after deformation of the first stage affect the final grain size remarkably. For AISI H13 hot work tool steel, the final grain size can be refined notably when deformation parameters for the first stage are set as follows: a deformation temperature range of 1?025 1?085 ℃; a true strain of above 0.26 and the interpass time between the first and the second stage of deformation less than 10 s.
基金supported by National Natural Science Foundation of China(Grant Nos.11971204,12271270)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200108)the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology and the Third Level Training Object of the Sixth“333 Project”in Jiangsu Province。
文摘The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.
文摘轨道梁作为跨座式单轨交通三大核心技术之一,其核心技术的创新与发展一直都是制约我国单轨交通发展的重要因素之一。结合“新型25 m PC轨道梁优化设计与制造工艺”课题,自主开发了“PC轨道梁配筋计算程序”和“PC轨道梁标准定型化设计软件”,并设计完成了跨座式单轨交通新型25 m PC轨道梁。通过智能软件自动生成25 m PC轨道梁的预应力钢筋和普通钢筋布置图,对轨道梁进行足尺25 m PC轨道梁静载、扭转、开裂、300万次疲劳和破坏试验验证。为验证新型25 m PC轨道梁优化设计与软件计算的正确性,将其试验数据与自制软件计算出的数据和理论数据进行对比。结果表明:软件自动设计的轨道梁,最大竖向挠度实测值为21.75 mm,校验系数为0.89,挠跨比为1/1122,而水平挠度实测值为2.36 mm,校验系数为0.72,满足规范要求;结合偏心及中心加载两种工况下试验结果,梁体应力差值在-0.51~0.61 MPa之间,扭转对直梁影响较小;开裂试验中,实测开裂荷载值为947 kN,实测重裂荷载为707 kN,由此得到梁体实际有效预应力975.26 MPa,实测值略大于设计有效预应力972.26 MPa,上述数据说明自动绘制的配筋图可以用于实际工程中。开发的智能软件对跨座式单轨交通轨道梁的智能建造提供技术支撑。