Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho...Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.展开更多
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
The history of educational technology in the last 50 years contains few instances of dramatic improvements in learning based on the adoption of a particular technology.An example involving artificial intelligence occu...The history of educational technology in the last 50 years contains few instances of dramatic improvements in learning based on the adoption of a particular technology.An example involving artificial intelligence occurred in the 1990s with the development of intelligent tutoring systems( ITSs). What happened with ITSs was that their success was limited to well-defined and relatively simple declarative and procedural learning tasks(e. g.,learning how to write a recursive function in LISP; doing multi-column addition),and improvements that were observed tended to be more limited than promised(e. g.,one standard deviation improvement at best rather than the promised standard deviation improvement).Still,there was some progress in terms of how to conceptualize learning. A seldom documented limitation was the notion of only viewing learning from only content and cognitive perspectives( i. e.,in terms of memory limitations,prior knowledge,bug libraries,learning hierarchies and sequences etc.). Little attention was paid to education conceived more broadly than developing specific cognitive skills with highly constrained problems. New technologies offer the potential to create dynamic and multi-dimensional models of a particular learner,and to track large data sets of learning activities,resources,interventions,and outcomes over a great many learners. Using those data to personalize learning for a particular learner developing knowledge,competence and understanding in a specific domain of inquiry is finally a real possibility. While the potential to make significant progress is clearly possible,the reality is less not so promising. There are many as yet unmet challenging some of which will be mentioned in this paper. A persistent worry is that educational technologists and computer scientists will again promise too much,too soon at too little cost and with too little effort and attention to the realities in schools and universities.展开更多
Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining ...Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.展开更多
Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quan...Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
Objective:Existing research shows that psychotherapists may experience secondary trauma and burnout,often neglecting self-care.This study aims to examine the effectiveness of self-care education in enhancing self-care...Objective:Existing research shows that psychotherapists may experience secondary trauma and burnout,often neglecting self-care.This study aims to examine the effectiveness of self-care education in enhancing self-care efficacy among psychotherapists and explore factors affecting improvements in their self-care abilities.Methods:A self-care workshop was conducted for 159 psychotherapists from various fields.Participants’demographic information and self-care ability data were collected.The Exercise of Self-Care Agency Scale(ESCA)was used to assess the participant’s self-care levels before and after the workshop.Results:Post-workshop,ESCA total scores and subscale scores of participants showed significant increases(all P<0.001).Notably,score improvement levels differed by gender and years of practice,with female therapists showing greater improvement than male therapists(t=2.069,P=0.040)and those with longer work experience showing greater improvement than those with shorter experience(F=2.537,P=0.042).Conclusion:Providing self-care education for psychotherapists is essential.Future self care education programs or interventions for psychotherapists should consider gender and work experience factors to better support their self-care enhancement.展开更多
To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development...To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of...With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.展开更多
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
随着人工智能大模型训练与推理业务的快速发展,智算中心面临算网协同调度的新挑战。为优化分布式智算Ring Allreduce业务的部署问题,首先,通过扩展传统波平面,开发了算力波平面技术,实现了算力与网络资源的一体化虚拟管理。然后,基于算...随着人工智能大模型训练与推理业务的快速发展,智算中心面临算网协同调度的新挑战。为优化分布式智算Ring Allreduce业务的部署问题,首先,通过扩展传统波平面,开发了算力波平面技术,实现了算力与网络资源的一体化虚拟管理。然后,基于算力波平面,提出了一种高效路由、波长、算力和时隙分配(routing,wavelength,computing power and time slot assignment,RWCTA)算法用于环规约(Ring Allreduce)业务部署。仿真结果表明,与传统基于波平面的部署算法相比,基于算力波平面的RWCTA算法能有效降低62.4%的总业务完成时间和54.5%的平均业务计算时间。展开更多
文摘Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
文摘The history of educational technology in the last 50 years contains few instances of dramatic improvements in learning based on the adoption of a particular technology.An example involving artificial intelligence occurred in the 1990s with the development of intelligent tutoring systems( ITSs). What happened with ITSs was that their success was limited to well-defined and relatively simple declarative and procedural learning tasks(e. g.,learning how to write a recursive function in LISP; doing multi-column addition),and improvements that were observed tended to be more limited than promised(e. g.,one standard deviation improvement at best rather than the promised standard deviation improvement).Still,there was some progress in terms of how to conceptualize learning. A seldom documented limitation was the notion of only viewing learning from only content and cognitive perspectives( i. e.,in terms of memory limitations,prior knowledge,bug libraries,learning hierarchies and sequences etc.). Little attention was paid to education conceived more broadly than developing specific cognitive skills with highly constrained problems. New technologies offer the potential to create dynamic and multi-dimensional models of a particular learner,and to track large data sets of learning activities,resources,interventions,and outcomes over a great many learners. Using those data to personalize learning for a particular learner developing knowledge,competence and understanding in a specific domain of inquiry is finally a real possibility. While the potential to make significant progress is clearly possible,the reality is less not so promising. There are many as yet unmet challenging some of which will be mentioned in this paper. A persistent worry is that educational technologists and computer scientists will again promise too much,too soon at too little cost and with too little effort and attention to the realities in schools and universities.
文摘Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article.
文摘Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
基金supported by the Natural Science Foundation of Hunan Province,China(2023JJ60076).
文摘Objective:Existing research shows that psychotherapists may experience secondary trauma and burnout,often neglecting self-care.This study aims to examine the effectiveness of self-care education in enhancing self-care efficacy among psychotherapists and explore factors affecting improvements in their self-care abilities.Methods:A self-care workshop was conducted for 159 psychotherapists from various fields.Participants’demographic information and self-care ability data were collected.The Exercise of Self-Care Agency Scale(ESCA)was used to assess the participant’s self-care levels before and after the workshop.Results:Post-workshop,ESCA total scores and subscale scores of participants showed significant increases(all P<0.001).Notably,score improvement levels differed by gender and years of practice,with female therapists showing greater improvement than male therapists(t=2.069,P=0.040)and those with longer work experience showing greater improvement than those with shorter experience(F=2.537,P=0.042).Conclusion:Providing self-care education for psychotherapists is essential.Future self care education programs or interventions for psychotherapists should consider gender and work experience factors to better support their self-care enhancement.
文摘To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
文摘With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
文摘随着人工智能大模型训练与推理业务的快速发展,智算中心面临算网协同调度的新挑战。为优化分布式智算Ring Allreduce业务的部署问题,首先,通过扩展传统波平面,开发了算力波平面技术,实现了算力与网络资源的一体化虚拟管理。然后,基于算力波平面,提出了一种高效路由、波长、算力和时隙分配(routing,wavelength,computing power and time slot assignment,RWCTA)算法用于环规约(Ring Allreduce)业务部署。仿真结果表明,与传统基于波平面的部署算法相比,基于算力波平面的RWCTA算法能有效降低62.4%的总业务完成时间和54.5%的平均业务计算时间。