In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term beh...Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.展开更多
A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were...A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.展开更多
In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried o...In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.展开更多
Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimen...Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.展开更多
The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aimin...The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.展开更多
Changsha,a typical city in central China,was selected as the study area to assess the variations of ecosystem service value on the basis of land-use change. The analysis not only included the whole city but also the u...Changsha,a typical city in central China,was selected as the study area to assess the variations of ecosystem service value on the basis of land-use change. The analysis not only included the whole city but also the urban district where the landscape changed more rapidly in the center of the city. Two LANDSAT TM data sets in 1986 and 2000 and land use data of five urban districts from 1995 to 2005 were used to estimate the changes in the size of six land use categories. Meanwhile,previously published value coefficients were used to detect the changes in the value of ecosystem services delivered by each land category. The result shows that the total value of ecosystem services in Changsha declines from $1 009.28 million per year in 1986 to $938.11 million per year in 2000. This decline is largely attributable to the increase of construction land,and the conversion from woodland and water body to cropland to keep the crop production. In the five districts,there is $6.19 million decline in ecosystem service value between 1995 and 2005. Yuelu District has the highest unit ecosystem service value while Yuhua District has the lowest one. This may be attributed to the greater conversion from cropland and grassland to woodland and water body with the increase of construction land in Yuelu District. It is suggested that the increase rate of construction land should be controlled rigorously and the area of woodland and water body should be increased or at least retained in the study area.展开更多
A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contamin...A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.展开更多
The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and ...The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.展开更多
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
基金Project(50278097) supported by the National Natural Science Foundation of China
文摘Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.
文摘A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.
基金Project(51178419)supported by the National Natural Science Foundation of China
文摘In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.
文摘Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.
基金Project(2006BAJ04A13) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan of ChinaProject(2009FJ4056) supported by the Key Project of Science and Technology Program of Hunan Province,ChinaProject(20090161120014) supported by the New Teachers Fund of Department of Education,China
文摘The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.
基金Project(hdzy0903) supported by Hunan University Ability Training Program by the Basic Operation Costs of Central Colleges and Universities for Scientific Research
文摘Changsha,a typical city in central China,was selected as the study area to assess the variations of ecosystem service value on the basis of land-use change. The analysis not only included the whole city but also the urban district where the landscape changed more rapidly in the center of the city. Two LANDSAT TM data sets in 1986 and 2000 and land use data of five urban districts from 1995 to 2005 were used to estimate the changes in the size of six land use categories. Meanwhile,previously published value coefficients were used to detect the changes in the value of ecosystem services delivered by each land category. The result shows that the total value of ecosystem services in Changsha declines from $1 009.28 million per year in 1986 to $938.11 million per year in 2000. This decline is largely attributable to the increase of construction land,and the conversion from woodland and water body to cropland to keep the crop production. In the five districts,there is $6.19 million decline in ecosystem service value between 1995 and 2005. Yuelu District has the highest unit ecosystem service value while Yuhua District has the lowest one. This may be attributed to the greater conversion from cropland and grassland to woodland and water body with the increase of construction land in Yuelu District. It is suggested that the increase rate of construction land should be controlled rigorously and the area of woodland and water body should be increased or at least retained in the study area.
基金Project(20507022) supported by the National Natural Science Foundation of China
文摘A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.
基金supported by National Research Foundation of South Africa
文摘The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.