Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the co...Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the conditions of COFCC with n(O)-n(C) (molar ratio) as 1.00-0.84 and n(SiO2)-n(CaO) as 1.00-0.39, the samples were heated by 10 kW microwave power to reach the given temperatures and held for different times respectively. The results show that the low-C-Cr ferrochromium metal phase in the reduced materials forms before the high-C-Cr ferrochromium metal phase does. With increasing temperature the C content of ferrochromium metals is in a positive correlation with the content of Cr. The C content of ferrochromium metal in reduced materials is 0-10.07% with an average value of 4.68%. With the increase of holding time the Cr content in ferrochromium metals is in a negative correlation with the content of C, while the content of Fe changes in the contrary way. In the microwave field the kinetic conditions of carburization are closely related with the temperature of microwave heating, holding time and carbon fitting ratio.展开更多
Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be ...Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.展开更多
基金Project(50474083) supported by the National Natural Science Foundation of ChinaProject supported by the Baoshan Iron & Steel Co. Ltd. of China
文摘Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the conditions of COFCC with n(O)-n(C) (molar ratio) as 1.00-0.84 and n(SiO2)-n(CaO) as 1.00-0.39, the samples were heated by 10 kW microwave power to reach the given temperatures and held for different times respectively. The results show that the low-C-Cr ferrochromium metal phase in the reduced materials forms before the high-C-Cr ferrochromium metal phase does. With increasing temperature the C content of ferrochromium metals is in a positive correlation with the content of Cr. The C content of ferrochromium metal in reduced materials is 0-10.07% with an average value of 4.68%. With the increase of holding time the Cr content in ferrochromium metals is in a negative correlation with the content of C, while the content of Fe changes in the contrary way. In the microwave field the kinetic conditions of carburization are closely related with the temperature of microwave heating, holding time and carbon fitting ratio.
基金Project(2008AA030503)supported by the National High Technology Research and Development Program of ChinaProject(51474238)supported by the National Natural Science Foundation of China
文摘Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.