Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism stu...Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud.展开更多
While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED...While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.展开更多
The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial...The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial direction.In addition to that Stefan blowing is considered.The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit.The primitive mass conservation equation,radial,tangential and axial momentum,heat,nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall(disk surface)and free stream boundary conditions.This highly nonlinear,strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system.The emerging 11th order system features an extensive range of dimensionless flow parameters,i.e.,disk stretching rate,Brownian motion,thermophoresis,bioconvection Lewis number,unsteadiness parameter,ordinary Lewis number,Prandtl number,mass convective Biot number,Péclet number and Stefan blowing parameter.Solutions of the system are obtained with developed semi-analytical technique,i.e.,Adomian decomposition method.Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.展开更多
Diallyl disulfide was synthesized by phase transfer catalyst (PTC) during microwave irradiation. The effects of different factors, such as the power of microwave irradiation, the time of microwave irradiation, PTC r...Diallyl disulfide was synthesized by phase transfer catalyst (PTC) during microwave irradiation. The effects of different factors, such as the power of microwave irradiation, the time of microwave irradiation, PTC reagents amount and the mole ratio of reactants, on the yield of product were investigated. The structure of diallyl disulfide was characterized by infrared spectra, mass spectra and ^1 H nuclear magnetic resonance. The bioactivity of diallyl disulfide was evaluated by cell viability assay on HepG2 hepatoma cells. The results show that the optimal reaction conditions are as follows: tetrabutylammonium bromide(TBAB) selected as a PTC, the mass ratio of TBAB to sodium disulfide of 0.021 : 1, the power of irradiation of 195 W, the reaction time of 12 rain, and the mole ratio of sodium disulfide to allyl chloride of 0.65 : 1. The yield of diallyl disulfide is 82.2%. The synthetical diallyl disulfide appears to be cytotoxic to HepG2 heoatoma cells in a dose-dependent manner.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies...Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.展开更多
Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investi...Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investigated during smelting and rolling process by composition design and technology control. The influence of parameters on chemical compositions, mechanical properties and microstructure was revealed by scanning electron microscope (SEM). The results show that, 1) main chemical components in SPHE are w(C)_〈40×10^-6, w(Si)_〈 0.01%, w(S)_〈0.009%, w(N)〈20×10^-6, w(O)〈_ 25×10^-6; 2) main mechanical properties of the SPHE are Crs=274 MPa, 00=334 MPa, A=48.9%; 3) main performances of deep drawing quality (DDQ) grade steel produced by SPHE are as follows, transversely crs=167 MPa, 00=298 MPa, n=0.219, r=2.46; vertically σs=166 MPa, 00=298 MPa, n=0.226, r=2.39; in 45° direction σ=171 MPa, 00=308 MPa, n=0.214, t=2.26; 4) microstrueture of DDQ is ferrite, average grain size is Grade 7.5, and inclusion size is 3-10μm.展开更多
In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios ...In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.展开更多
A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate ...A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.展开更多
基金Project(MMCS2023OF02)supported by the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,ChinaProject(AA23073018)supported by the Guangxi Science and Technology,ChinaProject(2024M751861)supported by the China Postdoctoral Science Foundation。
文摘Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud.
文摘While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.
文摘The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial direction.In addition to that Stefan blowing is considered.The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit.The primitive mass conservation equation,radial,tangential and axial momentum,heat,nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall(disk surface)and free stream boundary conditions.This highly nonlinear,strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system.The emerging 11th order system features an extensive range of dimensionless flow parameters,i.e.,disk stretching rate,Brownian motion,thermophoresis,bioconvection Lewis number,unsteadiness parameter,ordinary Lewis number,Prandtl number,mass convective Biot number,Péclet number and Stefan blowing parameter.Solutions of the system are obtained with developed semi-analytical technique,i.e.,Adomian decomposition method.Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.
基金Project (C03050205) supported by the National Natural Science Foundation of China
文摘Diallyl disulfide was synthesized by phase transfer catalyst (PTC) during microwave irradiation. The effects of different factors, such as the power of microwave irradiation, the time of microwave irradiation, PTC reagents amount and the mole ratio of reactants, on the yield of product were investigated. The structure of diallyl disulfide was characterized by infrared spectra, mass spectra and ^1 H nuclear magnetic resonance. The bioactivity of diallyl disulfide was evaluated by cell viability assay on HepG2 hepatoma cells. The results show that the optimal reaction conditions are as follows: tetrabutylammonium bromide(TBAB) selected as a PTC, the mass ratio of TBAB to sodium disulfide of 0.021 : 1, the power of irradiation of 195 W, the reaction time of 12 rain, and the mole ratio of sodium disulfide to allyl chloride of 0.65 : 1. The yield of diallyl disulfide is 82.2%. The synthetical diallyl disulfide appears to be cytotoxic to HepG2 heoatoma cells in a dose-dependent manner.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Projects(51704329,51705540)supported by the National Natural Science Foundation of ChinaProject(2018JJ3671)supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.
基金Project(50971135) supported by the National Natural Science Foundation of China
文摘Based on hot metal pretreatment (HMPT)-basic oxygen furnace (BOF)-Rheinstahl Heraeus (RH)-compact strip production (CSP) process, parameters controlling on cold rolling deep drawing substrate SPHE were investigated during smelting and rolling process by composition design and technology control. The influence of parameters on chemical compositions, mechanical properties and microstructure was revealed by scanning electron microscope (SEM). The results show that, 1) main chemical components in SPHE are w(C)_〈40×10^-6, w(Si)_〈 0.01%, w(S)_〈0.009%, w(N)〈20×10^-6, w(O)〈_ 25×10^-6; 2) main mechanical properties of the SPHE are Crs=274 MPa, 00=334 MPa, A=48.9%; 3) main performances of deep drawing quality (DDQ) grade steel produced by SPHE are as follows, transversely crs=167 MPa, 00=298 MPa, n=0.219, r=2.46; vertically σs=166 MPa, 00=298 MPa, n=0.226, r=2.39; in 45° direction σ=171 MPa, 00=308 MPa, n=0.214, t=2.26; 4) microstrueture of DDQ is ferrite, average grain size is Grade 7.5, and inclusion size is 3-10μm.
文摘In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.
基金Project(51036001)supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘A new solar coupling regeneration system is proposed in order to improve the reliability of solar desiccant regeneration system.The new system makes comprehensively use of the solar energy and can also be appropriate for energy-storage in a night operation mode when the electric power supply is at its valley.Comparison of the performance of the new system,the solar thermal regeneration system and the solar electrodialysis regeneration system are made and the influential factors of the performance of the new system are investigated.The results reveal that the new system will be more energy efficient than the solar thermal regeneration system and the solar electrodialysis regeneration system.