如何通过在线监测的直接测量参数准确估计电池荷电状态(State of Charge,SOC)与健康状态(State of Health,SOH),是蓄电池管理系统建立的核心与关键。设计的SOC估算方法为镉镍蓄电池管理系统有效地监测蓄电池组性能状态和寿命状态提供基...如何通过在线监测的直接测量参数准确估计电池荷电状态(State of Charge,SOC)与健康状态(State of Health,SOH),是蓄电池管理系统建立的核心与关键。设计的SOC估算方法为镉镍蓄电池管理系统有效地监测蓄电池组性能状态和寿命状态提供基础,有助于动车组在运行过程中的安全预警;同时,为蓄电池检修与维护策略优化提供数据支撑,助力国家可持续发展战略。从蓄电池不同寿命阶段内的充电起始电压序列中提取出可描述当前最大容量的潜在特征,通过F检验(F-Test)与主成分分析(Principal Component Analysis,PCA)进行特征筛选与特征融合,获得蓄电池健康状态指标;由充放电循环试验中采集到的不同寿命阶段内的放电终止电压建立镉镍蓄电池“记忆效应”的近似表达函数;基于此,采用基于Bagging的随机森林构建放电过程中蓄电池两端电压与SOC间的关联模型,可在蓄电池放电过程中实现基于放电电压的SOC估算。最终,试验结果显示:通过SOC估算值与实际测量值的对比,得到模型均方根误差(Mean Square Error,MSE)和平均绝对误差百分比(Mean Absolute Percentage Error,MAPE)分别为0.1486和0.8112%,证明了所提出的SOC估算模型取得了较高的估算精度与较强的鲁棒性,为在线监测镉镍蓄电池SOC提供基础。展开更多
Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into co...Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.展开更多
The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calo...The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calorimetry(DSC) and semi-quantitative shape memory effect test, the microstructure and shape memory effect were analyzed. It is found that lots of βphase and few α phase are formed in the quenching of Cu-7.5Al-9.7Mn-3.4Zn-0.3Ti-0.14B(mass fraction, %) alloy, a great deal of martensite and few α phase are formed in the aging alloy, while the annealing alloy is composed of a great deal of α phase and few βphase. The tensile strength and elongation of the annealed alloy are 649 MPa and 17.1%, respectively. Some tiny and dispersion distributed second phase particles are generated in Ti and B precipitates, greatly improving the alloy machinability.展开更多
基金Project(51509062)supported by the National Natural Science Foundation of ChinaProject(ZR2014EEP024)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(HIT.NSRIF.201727)supported by the Fundamental Research Funds for the Central Universities,China
文摘Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(CX2012B037)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(2013zzts017)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,ChinaProject(2012bjjxj015)supported by the Excellent Doctor Degree Thesis Support Foundation of Central South University,China
文摘The mechanical properties and cutting performance of the designed Cu Al Mn Zn Ti B shape memory alloy were studied by tensile test and microstructure observation. Using X-ray diffractometry, differential scanning calorimetry(DSC) and semi-quantitative shape memory effect test, the microstructure and shape memory effect were analyzed. It is found that lots of βphase and few α phase are formed in the quenching of Cu-7.5Al-9.7Mn-3.4Zn-0.3Ti-0.14B(mass fraction, %) alloy, a great deal of martensite and few α phase are formed in the aging alloy, while the annealing alloy is composed of a great deal of α phase and few βphase. The tensile strength and elongation of the annealed alloy are 649 MPa and 17.1%, respectively. Some tiny and dispersion distributed second phase particles are generated in Ti and B precipitates, greatly improving the alloy machinability.