With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are st...Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.展开更多
One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,p...One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties.展开更多
We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),campho...We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),camphoric acid(H_(2)cpa)].In[Cd(dip)(cda)]·4H_(2)O}_(n)(1),the Cd^(2+)ions,acting as tetrahedral nodes,are linked by dipand cda^(2-)ligands with four Cd^(2+)ions into five-fold interpenetrating network array of topology of dia.In{[Cd(dip)(cpa)]·4H_(2)O}_(n)(2),the Cd^(2+)ions,acting as a 4-connector,are linked by cpa^(2-)and dip ligands into a 3D framework ofcds topology.In{[Ni(dia)_(2)Cl_(2)]·DMF}_(n)(3),the Ni^(2+)ion is linked by four dia ligands into a layer structure,and 1Dchannels of a cross-section of 1.35 nm×0.96 nm are formed.In{[Cd(dia)_(2)(H_(2)O)_(2)](NO_(3))_(2)·2DMSO}n(4),the dia ligandsconnected Cd^(2+)ions into a 2D layer,and 1D channels are formed between adjacent layers with a cross-section of0.87 nm×0.43 nm.In[Zn(dip)Cl_(2)]_(n)(5),the Zn^(2+)ion is linked by dip ligands into an infinite 1D chain.The infrared,thermal gravimetric,and fluorescent emission data were collected and analyzed for these coordination polymers.CCDC:2356055,1;2440075,2;2356057,3;2356057,4;2356059,5.展开更多
This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal me...This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.展开更多
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic...Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.展开更多
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d...A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.展开更多
Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubri...Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements.展开更多
Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1....Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.展开更多
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an...Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.展开更多
Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfull...Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.展开更多
A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal st...A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.展开更多
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity a...Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.展开更多
A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_...A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.展开更多
Xylo-oligosaccharides(XOSs)are a category of functional oligosaccharides primarily composed of 2-7 xylose units linked byβ-1,4 glycosidic bonds.They are recognized as soluble dietary fibers with prebiotic properties....Xylo-oligosaccharides(XOSs)are a category of functional oligosaccharides primarily composed of 2-7 xylose units linked byβ-1,4 glycosidic bonds.They are recognized as soluble dietary fibers with prebiotic properties.Recently, there has been significant interest in manufacturing XOSs from xylan extracted from lignocellulosic biomass using enzyme catalysis under mild conditions. In this work, the arabinofuranosidase Abf62A gene was cloned from Aspergillus usamii genomic DNA through sequential molecular processes and expressed in Pichia pastoris X33. The xylan (100 g/L) extracted xylan in wheat straw (WS) was biologically hydrolyzed into 50.32 g/L of XOSs by xylanase Xyn11A (300 U/g substrate) and arabinofuranase Abf62A (20 U/g substrate), which indicated a notable synergistic effect compared to the 34.42 g/L XOSs produced via Xyn11A. The 50.32 g/L of XOSs products comprised xylobiose (31.71 g/L), xylotriose (15.92 g/L), xylotetraose (1.65 g/L) and xylopentaose (1.04 g/L). Notably, the combined content of xylobiose and xylotriose accounted for up to 94.7%. The XOSs purified from the enzyme hydrolysate could effectually scavenge free radicals, and the antioxidant activity was more than 90%. In summary, XOSs were biologically manufactured from wheat straw xylan through the synergistic biocatalysis via xylanase and arabinofuranosidase Abf62A in a green and sustainable way, rending one kind of prebiotic oligosaccharides with substantial positive effects on human and animal health.展开更多
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60%and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195).
文摘Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.
文摘One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties.
文摘We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),camphoric acid(H_(2)cpa)].In[Cd(dip)(cda)]·4H_(2)O}_(n)(1),the Cd^(2+)ions,acting as tetrahedral nodes,are linked by dipand cda^(2-)ligands with four Cd^(2+)ions into five-fold interpenetrating network array of topology of dia.In{[Cd(dip)(cpa)]·4H_(2)O}_(n)(2),the Cd^(2+)ions,acting as a 4-connector,are linked by cpa^(2-)and dip ligands into a 3D framework ofcds topology.In{[Ni(dia)_(2)Cl_(2)]·DMF}_(n)(3),the Ni^(2+)ion is linked by four dia ligands into a layer structure,and 1Dchannels of a cross-section of 1.35 nm×0.96 nm are formed.In{[Cd(dia)_(2)(H_(2)O)_(2)](NO_(3))_(2)·2DMSO}n(4),the dia ligandsconnected Cd^(2+)ions into a 2D layer,and 1D channels are formed between adjacent layers with a cross-section of0.87 nm×0.43 nm.In[Zn(dip)Cl_(2)]_(n)(5),the Zn^(2+)ion is linked by dip ligands into an infinite 1D chain.The infrared,thermal gravimetric,and fluorescent emission data were collected and analyzed for these coordination polymers.CCDC:2356055,1;2440075,2;2356057,3;2356057,4;2356059,5.
基金The project was supported by Natural Science Foundation of Shandong Province(ZR2021MB104)National Natural Science Foundation of China(22078174).
文摘This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.
文摘Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.
文摘A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.
文摘Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements.
文摘Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.
文摘Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.
文摘Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.
文摘A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
文摘Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.
文摘A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.
文摘Xylo-oligosaccharides(XOSs)are a category of functional oligosaccharides primarily composed of 2-7 xylose units linked byβ-1,4 glycosidic bonds.They are recognized as soluble dietary fibers with prebiotic properties.Recently, there has been significant interest in manufacturing XOSs from xylan extracted from lignocellulosic biomass using enzyme catalysis under mild conditions. In this work, the arabinofuranosidase Abf62A gene was cloned from Aspergillus usamii genomic DNA through sequential molecular processes and expressed in Pichia pastoris X33. The xylan (100 g/L) extracted xylan in wheat straw (WS) was biologically hydrolyzed into 50.32 g/L of XOSs by xylanase Xyn11A (300 U/g substrate) and arabinofuranase Abf62A (20 U/g substrate), which indicated a notable synergistic effect compared to the 34.42 g/L XOSs produced via Xyn11A. The 50.32 g/L of XOSs products comprised xylobiose (31.71 g/L), xylotriose (15.92 g/L), xylotetraose (1.65 g/L) and xylopentaose (1.04 g/L). Notably, the combined content of xylobiose and xylotriose accounted for up to 94.7%. The XOSs purified from the enzyme hydrolysate could effectually scavenge free radicals, and the antioxidant activity was more than 90%. In summary, XOSs were biologically manufactured from wheat straw xylan through the synergistic biocatalysis via xylanase and arabinofuranosidase Abf62A in a green and sustainable way, rending one kind of prebiotic oligosaccharides with substantial positive effects on human and animal health.
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60%and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.