Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space developmen...Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.展开更多
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of deser...A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe...Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of...The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.展开更多
Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value,...Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.展开更多
Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.I...Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
基金Project(BK20210721) supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(52108380,52078506) supported by the National Natural Science Foundation of ChinaProject(2023A1515012159) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金Projects(51205161, 51175220, 51290292) supported by the National Natural Science Foundation of ChinaProjects(20120061120051, 20100061110023) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+3 种基金Project(OSR-04-04) supported by Cooperation and Innovation to National Potential Oil and Gas for Production and Research, ChinaProject(200905016) supported by Ten Outstanding Youth Fund Project of Jilin University, ChinaProject(2012M511345) supported by China Postdoctoral Science FoundationProject(450060481176) supported by Basic Scientific Research Expenses of Jilin University, China
文摘A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Project supported by the Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
文摘The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.
基金Projects(60474029,60774045,60604005) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.
基金Project(61172047) supported by the National Natural Science Foundation of China
文摘Using the first-principles calculations based on density functional theory(DFT),the structure stability,electronic and some optical properties of C and N doped cubic ZrO2(c-ZrO2) in 24-atom systems were investigated.It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions.The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV,respectively,which are lower than that of the pure ZrO2(3.349 eV).And optical properties results depict that anion doping,especially C adding,can enhance the static dielectric function,visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.