The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and d...The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and decreasing Nd content resulted in an increase in grain size from 17.2 to 29.2μm,and two types of LPSO phases,14 H and 18 R,formed in the alloy.The mechanical properties of the alloys were predominantly influenced by the LPSO phase,with the grain size effect being relatively minor.Based on this analysis,higher Y and lower Nd contents enhanced the tensile strength,yield strength,and elongation of the alloys,with additional improvements observed following solid solution treatment.Changes in Y and Nd content caused a shift in fracture patterns,transitioning from ductile fracture to brittle fracture and then to mixed fracture.Following solid solution treatment,the alloy progressively transitions from intergranular to a combination of ductile and deconvolutional fracture.The deformation modes observed at each stage are as follows:an increase in LPSO phases and twins activates pyramidal slip and suppresses prismatic slip.展开更多
Abstract:At present,the surrounding rock of the deep mine roadway is prone to post-peak stress under the action of high stress,and secondary rock burst disaster is prone to occur under complex stress disturbance.Accor...Abstract:At present,the surrounding rock of the deep mine roadway is prone to post-peak stress under the action of high stress,and secondary rock burst disaster is prone to occur under complex stress disturbance.According to incomplete statistics,as of 2023,80%of coal mine rock bursts accidents in China occur in mining roadway.In view of this phenomenon,the cyclic impact test of post-peak sandstone is designed,focusing on the post-peak stress state of sandstone,and exploring the post-peak dynamic response of sandstone.The post-peak sandstone specimens were prepared by a uniaxial compressor,and then cyclic impact tests were carried out on the post-peak sandstone under different coaxial pressure conditions by an improved separated Hopkinson equipment.The results show that:1)The number of impact times required for sandstone failure after peak decreased with the increase of axial pressure,indicating that the impact tendency of sandstone after peak decreased under lower axial pressure.On the contrary,the post-peak sandstone had strong impact tendency under higher axial pressure;2)The higher the axial pressure,the lower the dynamic strength of the post-peak sandstone,indicating that the axial pressure promoted the failure process of the post peak sandstone;3)It was a nonlinear evolution of a quadratic polynomial function between the dissipation-energy release rate and axial pressure;4)Shear failure occurred mainly in post-peak impact sandstone with the increased axial pressure,and the composite failure of intergranular failure and transgranular failure changed to single intergranular failure at the microscopic level.The research shows that when the roadway surrounding rock was in the post-peak stress state,reducing the static stress was the key to prevent the secondary ground pressure disaster.The research results provide a theoretical basis for the prevention and control of roadway rock burst disaster under high ground stress environment,and promote the research and exploration of post-peak mechanical properties of coal and rock.展开更多
In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great sign...Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great significance to the understanding of rock failure mechanisms.To this end,we have conducted numerical simulation researches on modeⅠcracking process of rock with varying homogeneity,using the Realistic Failure Process Analysis program.With the increase of homogeneity,cracks are concentrating to the ligament area with a decreasing number of crack bifurcations,and the main crack path is becoming smooth.Crack behaviors and mechanical properties are influenced significantly when the homogeneity index is in the range of 1.5 to 5.When the homogeneity index is greater than 30,they are not affected by rock homogeneity and the rock can be considered as essentially homogeneous.It is considered that the global and local strengths are affected by the distribution of rock mechanical properties at mesoscale,which influence the crack behaviors and mechanical characteristics.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topo...An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.展开更多
A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robus...A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.展开更多
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy...Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.展开更多
For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control character...For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control characteristic was proposed for an organic material polymerization production.The control solution has passive fault-tolerant ability for the jacket cooling water cutting off fault and active fault-tolerant potential for the coil cooling water cutting off fault,and it has good control ability,high saving energy and reducing consumption performance.Fault detection and diagnosis and fault-tolerant control strategy are designed for the coil cooling fault to achieve the active fault-tolerant control function.The CSTR temperature dual control,process fault detection and diagnosis and active fault-tolerant control were full integrated into the CSTR temperature fault-tolerant control system,which achieve fault tolerance control of CSTR temperature for any severe malfunction of jacket cooling or coil cooling cutting off,and the security for CSTR exothermic reaction is improved.Finally,the effectiveness of this system was validated by semi-physical simulation experiment.展开更多
Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking con...Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course.展开更多
基金Project(2024QN05053)supported by the Natural Science Foundation of Inner Mongolia,ChinaProjects(U24A20106,51931005,52171048)supported by the National Natural Science Foundation of ChinaProject(2020ZDLGY12-02)supported by the Key Industry Innovation Chain Project of Shaanxi Province,China。
文摘The microstructure,fracture mechanisms,deformation modes,and their correlation with the mechanical properties of Mg-Zn-Gd alloys were analyzed,considering the influence of Y and Nd additions.Increasing Y content and decreasing Nd content resulted in an increase in grain size from 17.2 to 29.2μm,and two types of LPSO phases,14 H and 18 R,formed in the alloy.The mechanical properties of the alloys were predominantly influenced by the LPSO phase,with the grain size effect being relatively minor.Based on this analysis,higher Y and lower Nd contents enhanced the tensile strength,yield strength,and elongation of the alloys,with additional improvements observed following solid solution treatment.Changes in Y and Nd content caused a shift in fracture patterns,transitioning from ductile fracture to brittle fracture and then to mixed fracture.Following solid solution treatment,the alloy progressively transitions from intergranular to a combination of ductile and deconvolutional fracture.The deformation modes observed at each stage are as follows:an increase in LPSO phases and twins activates pyramidal slip and suppresses prismatic slip.
基金Projects(U23B2093,52034009)supported by the National Natural Science Foundation of ChinaProject(2022YFC3004602)supported by the National Key Research and Development Program of ChinaProject(BBJ2024009)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Abstract:At present,the surrounding rock of the deep mine roadway is prone to post-peak stress under the action of high stress,and secondary rock burst disaster is prone to occur under complex stress disturbance.According to incomplete statistics,as of 2023,80%of coal mine rock bursts accidents in China occur in mining roadway.In view of this phenomenon,the cyclic impact test of post-peak sandstone is designed,focusing on the post-peak stress state of sandstone,and exploring the post-peak dynamic response of sandstone.The post-peak sandstone specimens were prepared by a uniaxial compressor,and then cyclic impact tests were carried out on the post-peak sandstone under different coaxial pressure conditions by an improved separated Hopkinson equipment.The results show that:1)The number of impact times required for sandstone failure after peak decreased with the increase of axial pressure,indicating that the impact tendency of sandstone after peak decreased under lower axial pressure.On the contrary,the post-peak sandstone had strong impact tendency under higher axial pressure;2)The higher the axial pressure,the lower the dynamic strength of the post-peak sandstone,indicating that the axial pressure promoted the failure process of the post peak sandstone;3)It was a nonlinear evolution of a quadratic polynomial function between the dissipation-energy release rate and axial pressure;4)Shear failure occurred mainly in post-peak impact sandstone with the increased axial pressure,and the composite failure of intergranular failure and transgranular failure changed to single intergranular failure at the microscopic level.The research shows that when the roadway surrounding rock was in the post-peak stress state,reducing the static stress was the key to prevent the secondary ground pressure disaster.The research results provide a theoretical basis for the prevention and control of roadway rock burst disaster under high ground stress environment,and promote the research and exploration of post-peak mechanical properties of coal and rock.
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.
基金Project(BJJWZYJH01201911413037)supported by the Beijing Outstanding Young Scientist Program,ChinaProjects(51622404,41877257)supported by the National Natural Science Foundation of ChinaProject(2018SMHKJ-A-J-03)supported by Shaanxi Coal Group Key Project,China。
文摘Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great significance to the understanding of rock failure mechanisms.To this end,we have conducted numerical simulation researches on modeⅠcracking process of rock with varying homogeneity,using the Realistic Failure Process Analysis program.With the increase of homogeneity,cracks are concentrating to the ligament area with a decreasing number of crack bifurcations,and the main crack path is becoming smooth.Crack behaviors and mechanical properties are influenced significantly when the homogeneity index is in the range of 1.5 to 5.When the homogeneity index is greater than 30,they are not affected by rock homogeneity and the rock can be considered as essentially homogeneous.It is considered that the global and local strengths are affected by the distribution of rock mechanical properties at mesoscale,which influence the crack behaviors and mechanical characteristics.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.
基金Project(2012AA051601)supported by the High-Tech Research and Development Program of China
文摘An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.
基金Project(11202230)supported by the National Natural Science Foundation of China
文摘A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.
基金Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products,China。
文摘Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.
基金Project(2013JM8024)Supported by Natural Science Basic Research Plan in Shaanxi Province of China
文摘For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control characteristic was proposed for an organic material polymerization production.The control solution has passive fault-tolerant ability for the jacket cooling water cutting off fault and active fault-tolerant potential for the coil cooling water cutting off fault,and it has good control ability,high saving energy and reducing consumption performance.Fault detection and diagnosis and fault-tolerant control strategy are designed for the coil cooling fault to achieve the active fault-tolerant control function.The CSTR temperature dual control,process fault detection and diagnosis and active fault-tolerant control were full integrated into the CSTR temperature fault-tolerant control system,which achieve fault tolerance control of CSTR temperature for any severe malfunction of jacket cooling or coil cooling cutting off,and the security for CSTR exothermic reaction is improved.Finally,the effectiveness of this system was validated by semi-physical simulation experiment.
基金Projects(90510018, 50679006) supported by the National Natural Science Foundation of ChinaProject(NCET-05-0413) support by the Program for New Century Excellent Talents in University
文摘Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course.