We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some c...We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.展开更多
基金Natural Science Foundation of Gansu Province(23JRRA866)Higher Education Innovation Fund of Gansu Provincial Department of Education(2025A-132)+1 种基金University-level Scientific Research and Innovation Project of Gansu University of Political Science and Law(GZF2024XQN16)Youth Foundation of Lanzhou Jiaotong University(2023023)。
文摘We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.