Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground ...Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.展开更多
Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the ar...Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system(GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.展开更多
基金Project(50978198) supported by the National Natural Science Foundation of ChinaProject(SLDRCE08-B-03) supported by the Ministry of Science and Technology of China
文摘Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions.
基金Project supported by the 2013 Inje University Research Grant of Korea
文摘Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system(GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.