In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
Sulfide solid electrolytes(S-SEs)are widely preferred for their high ionic conductivity and processability.However,the further development of S-SEs is hindered by the excessive price of its critical raw materials of L...Sulfide solid electrolytes(S-SEs)are widely preferred for their high ionic conductivity and processability.However,the further development of S-SEs is hindered by the excessive price of its critical raw materials of Li_(2)S.Herein,a low-cost and environmentally friendly method is proposed to synthesize Li_(2)S by the carbothermal reduction reaction of Li_(2)SO_(4)in one step,and the effects of various factors are also discussed.As a result,a purity of 99.67%is obtained over the self-prepared Li_(2)S.More importantly,the cost of the self-prepared Li_(2)S is only about 50$/kg,which is significantly lower than that of the commercial counterpart(10000−15000 dollar/kg).Moreover,the ionic conductivity of Li_(5.5)PS_(4.5)Cl_(1.5)prepared using self-prepared Li_(2)S as raw materials is 4.19 mS/cm at room temperature,which is a little higher than that of Li_(5.5)PS_(4.5)Cl_(1.5)using commercial Li_(2)S(4.05 mS/cm).And the all-solid-state lithium batteries(ASSLBs)with the as-prepared electrolytes could maintain a discharge capacity of 109.9 mA·h/g with an average coulombic efficiency(CE)of 98%after 100 cycles at 0.2 C,which is equivalent to that using commercial Li_(2)S,demonstrating that the preparation strategy of Li_(2)S proposed in this work is feasible.展开更多
This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternati...This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.展开更多
In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to...In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.展开更多
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
基金Project(52374407)supported by the National Natural Science Foundation of China。
文摘Sulfide solid electrolytes(S-SEs)are widely preferred for their high ionic conductivity and processability.However,the further development of S-SEs is hindered by the excessive price of its critical raw materials of Li_(2)S.Herein,a low-cost and environmentally friendly method is proposed to synthesize Li_(2)S by the carbothermal reduction reaction of Li_(2)SO_(4)in one step,and the effects of various factors are also discussed.As a result,a purity of 99.67%is obtained over the self-prepared Li_(2)S.More importantly,the cost of the self-prepared Li_(2)S is only about 50$/kg,which is significantly lower than that of the commercial counterpart(10000−15000 dollar/kg).Moreover,the ionic conductivity of Li_(5.5)PS_(4.5)Cl_(1.5)prepared using self-prepared Li_(2)S as raw materials is 4.19 mS/cm at room temperature,which is a little higher than that of Li_(5.5)PS_(4.5)Cl_(1.5)using commercial Li_(2)S(4.05 mS/cm).And the all-solid-state lithium batteries(ASSLBs)with the as-prepared electrolytes could maintain a discharge capacity of 109.9 mA·h/g with an average coulombic efficiency(CE)of 98%after 100 cycles at 0.2 C,which is equivalent to that using commercial Li_(2)S,demonstrating that the preparation strategy of Li_(2)S proposed in this work is feasible.
文摘This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.
基金Project(50634030) supported by the National Natural Science Foundation of China
文摘In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.