A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitori...In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitoring system is composed of three parts: sensor system, signal sampling and processing system, and safety monitoring and assessment system. Combining theoretical analysis with measured data analysis, main monitoring contents and layout of measuring points were determined. The vibration response monitoring was significantly investigated. The main contents of safety monitoring on vibration response monitoring are vibration of the main body of the Nanjing Yangtze river bridge, collision avoidance of the bridge piers, vibration of girders on high piers for the bridge approach and earthquake. As a field laboratory, the safety monitorying system also provides information to investigate the unknown and indeterminate problems on bridge structures and specific environment around bridges.展开更多
The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an unde...The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.展开更多
This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mud...This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.展开更多
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird...To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
文摘In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitoring system is composed of three parts: sensor system, signal sampling and processing system, and safety monitoring and assessment system. Combining theoretical analysis with measured data analysis, main monitoring contents and layout of measuring points were determined. The vibration response monitoring was significantly investigated. The main contents of safety monitoring on vibration response monitoring are vibration of the main body of the Nanjing Yangtze river bridge, collision avoidance of the bridge piers, vibration of girders on high piers for the bridge approach and earthquake. As a field laboratory, the safety monitorying system also provides information to investigate the unknown and indeterminate problems on bridge structures and specific environment around bridges.
基金Projects(U1965205,51779251,41672314)supported by the National Natural Science Foundation of China。
文摘The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+3 种基金Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology,ChinaProject(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(SJCX202017) supported by the Practical Innovation Program for Graduates of Changsha University of Science & Technology, China。
文摘This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.
基金Project(50608008) supported by the National Natural Science Foundation of Chinaproject(20050536002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.