期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
“就算”的词汇化及其再演变研究 被引量:3
1
作者 刘红妮 《汉语学习》 CSSCI 北大核心 2021年第4期3-12,共10页
本文从历时角度考察现代汉语连词“就算”的形成,探讨与“就算”有关的一系列演变。“就算”先是从短语词汇化为连词,词汇化之后并没有停止演变,而是进一步发生构式化,形成“就算X,也/但Y”等构式;此外,“就算”还进一步发生再词汇化,... 本文从历时角度考察现代汉语连词“就算”的形成,探讨与“就算”有关的一系列演变。“就算”先是从短语词汇化为连词,词汇化之后并没有停止演变,而是进一步发生构式化,形成“就算X,也/但Y”等构式;此外,“就算”还进一步发生再词汇化,形成新连词“就算是”。汉语有些词在词汇化之后,还会再发生进一步的相关演变。 展开更多
关键词 “就算” 词汇化 再演变 构式化 再词汇化
在线阅读 下载PDF
连词“就算”的形成 被引量:4
2
作者 韩启振 《语文建设》 北大核心 2014年第02Z期70-71,共2页
"就算"的形成最早追溯到"算"的语义。元代,"算"出现"可归为、可认做"义,大量出现"就+算"组合;明代"就算"开始表让步条件意义;晚清,让步条件标记"就算"成熟。&qu... "就算"的形成最早追溯到"算"的语义。元代,"算"出现"可归为、可认做"义,大量出现"就+算"组合;明代"就算"开始表让步条件意义;晚清,让步条件标记"就算"成熟。"就算"的形成与句法扩展、语义演变、使用频率等方面密切相关。 展开更多
关键词 “就算”让步条件 词汇化
在线阅读 下载PDF
Clustering method based on data division and partition 被引量:1
3
作者 卢志茂 刘晨 +2 位作者 S.Massinanke 张春祥 王蕾 《Journal of Central South University》 SCIE EI CAS 2014年第1期213-222,共10页
Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP... Many classical clustering algorithms do good jobs on their prerequisite but do not scale well when being applied to deal with very large data sets(VLDS).In this work,a novel division and partition clustering method(DP) was proposed to solve the problem.DP cut the source data set into data blocks,and extracted the eigenvector for each data block to form the local feature set.The local feature set was used in the second round of the characteristics polymerization process for the source data to find the global eigenvector.Ultimately according to the global eigenvector,the data set was assigned by criterion of minimum distance.The experimental results show that it is more robust than the conventional clusterings.Characteristics of not sensitive to data dimensions,distribution and number of nature clustering make it have a wide range of applications in clustering VLDS. 展开更多
关键词 CLUSTERING DIVISION PARTITION very large data sets (VLDS)
在线阅读 下载PDF
Fault detection method with PCA and LDA and its application to induction motor 被引量:3
4
作者 JUNG D Y LEE S M +2 位作者 王洪梅 KIM J H LEE S H 《Journal of Central South University》 SCIE EI CAS 2010年第6期1238-1242,共5页
A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature ve... A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature vector with PCA and LDA from current signal that was measured by an experiment,the reference data were used to produce matching values.In a diagnostic step,two matching values that were obtained by PCA and LDA,respectively,were combined by probability model,and a faulted signal was finally diagnosed.As the proposed diagnosis algorithm brings only merits of PCA and LDA into relief,it shows excellent performance under the noisy environment.The simulation was executed under various noisy conditions in order to demonstrate the suitability of the proposed algorithm and showed more excellent performance than the case just using conventional PCA or LDA. 展开更多
关键词 principal component analysis (PCA) linear discriminant analysis (LDA) induction motor fault diagnosis fusionalgorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部