期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“阿穆尔”级潜艇的三件宝:潜伏、安静、武器好
1
作者 邱远川 《财会月刊》 北大核心 2013年第6期I0005-I0005,共1页
超过西方水平 上世纪70年代末,苏联建造了“基洛”级常规动力潜艇,该型潜艇因极低的噪声水平被称为“大洋黑洞”,意即“只有在没有噪声的海洋中才能搜寻到它”。
关键词 常规动力潜艇 穆尔 安静 武器 “基洛”级 70年代 噪声
在线阅读 下载PDF
Fingerprint singular points extraction based on orientation tensor field and Laurent series 被引量:3
2
作者 刘琴 彭可 +4 位作者 刘巍 谢琴 李仲阳 兰浩 金耀 《Journal of Central South University》 SCIE EI CAS 2014年第5期1927-1934,共8页
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s... Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations. 展开更多
关键词 fingerprint extraction singular point fingerprint orientation tensor field Laurent series rotational invariance supportvector machine (SVM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部