This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffus...This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffusions to the solution of a deterministic McKean-Vlasov equation.The strong well-posedness of the associated McKean-Vlasov equation and a corresponding propagation of chaos result are proven.In particular,we also provide precise estimates of the convergence speed with respect to a Wasserstein-like metric.展开更多
Source location is the core foundation of microseismic monitoring.To date,commonly used location methods have usually been based on the ray-tracing travel-time technique,which generally adopts an L1 or L2 norm to esta...Source location is the core foundation of microseismic monitoring.To date,commonly used location methods have usually been based on the ray-tracing travel-time technique,which generally adopts an L1 or L2 norm to establish the location objective function.However,the L1 norm usually achieves low location accuracy,whereas the L2 norm is easily affected by large P-wave arrival-time picking errors.In addition,traditional location methods may be affected by the initial iteration point used to find a local optimum location.Furthermore,the P-wave arrival-time data that have travelled long distances are usually poor in quality.To address these problems,this paper presents a microseismic source location method using the Log-Cosh function and distant sensor-removed P-wave arrival data.Its basic principles are as follows:First,the source location objective function is established using the Log-Cosh function.This function has the stability of the L1 norm and location accuracy of the L2 norm.Then,multiple initial points are generated randomly in the mining area,and the established Log-Cosh location objective function is used to obtain multiple corresponding location results.The average value of the 50 location points with the largest data field potential values is treated as the initial location result.Next,the P-wave travel times from the initial location result to triggered sensors are calculated,and then the P-wave arrival data with travel times exceeding 0.2 s are removed.Finally,the aforementioned location steps are repeated with the denoised P-wave arrival dataset to obtain a high-precision location result.Two synthetic events and eight blasting events from the Yongshaba mine,China,were used to test the proposed method.Regardless of whether the P-wave arrival data with long travel times were eliminated,the location error of the proposed method was smaller than that of the L1/L2 norm and trigger-time-based location method(TT1/TT2 method).Furthermore,after eliminating the Pwave arrival data with long travel distances,the location accuracy of these three location methods increased,indicating that the proposed location method has good application prospects.展开更多
Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framewor...Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.展开更多
A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving ...A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.展开更多
In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwav...In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct...Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.展开更多
文摘This study considers an-particle jump-diffusion system with mean field interaction,where the coefficients are locally Lipschitz continuous.We address the convergence as n→∞of the empirical measure of the jump-diffusions to the solution of a deterministic McKean-Vlasov equation.The strong well-posedness of the associated McKean-Vlasov equation and a corresponding propagation of chaos result are proven.In particular,we also provide precise estimates of the convergence speed with respect to a Wasserstein-like metric.
基金Project(cstc2020jcyj-bshX0106)supported by the Chongqing Postdoctoral Science Foundation,ChinaProject(2020M683247)supported by the China Postdoctoral Science Foundation+1 种基金Project(cstc2020jcyj-zdxmX0023)supported by the Key Natural Science Foundation Project of Chongqing,ChinaProject(551974043)supported by the National Natural Science Foundation of China。
文摘Source location is the core foundation of microseismic monitoring.To date,commonly used location methods have usually been based on the ray-tracing travel-time technique,which generally adopts an L1 or L2 norm to establish the location objective function.However,the L1 norm usually achieves low location accuracy,whereas the L2 norm is easily affected by large P-wave arrival-time picking errors.In addition,traditional location methods may be affected by the initial iteration point used to find a local optimum location.Furthermore,the P-wave arrival-time data that have travelled long distances are usually poor in quality.To address these problems,this paper presents a microseismic source location method using the Log-Cosh function and distant sensor-removed P-wave arrival data.Its basic principles are as follows:First,the source location objective function is established using the Log-Cosh function.This function has the stability of the L1 norm and location accuracy of the L2 norm.Then,multiple initial points are generated randomly in the mining area,and the established Log-Cosh location objective function is used to obtain multiple corresponding location results.The average value of the 50 location points with the largest data field potential values is treated as the initial location result.Next,the P-wave travel times from the initial location result to triggered sensors are calculated,and then the P-wave arrival data with travel times exceeding 0.2 s are removed.Finally,the aforementioned location steps are repeated with the denoised P-wave arrival dataset to obtain a high-precision location result.Two synthetic events and eight blasting events from the Yongshaba mine,China,were used to test the proposed method.Regardless of whether the P-wave arrival data with long travel times were eliminated,the location error of the proposed method was smaller than that of the L1/L2 norm and trigger-time-based location method(TT1/TT2 method).Furthermore,after eliminating the Pwave arrival data with long travel distances,the location accuracy of these three location methods increased,indicating that the proposed location method has good application prospects.
基金Projects(51078359, 51208522) supported by the National Natural Science Foundation of ChinaProjects(20110491269, 2012T50708) supported by China Postdoctoral Science FoundationProject supported by Postdoctoral Science Foundation of Central South University, China
文摘Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.
基金Projects(60504027,60573123) supported by the National Natural Science Foundation of ChinaProject(20060401037) supported by the National Postdoctor Science Foundation of ChinaProject(X106866) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(531105050037)supported by the Changjiang Scholars and Innovative Research Team in University,ChinaProjects(201208430262,201306130031)supported by the National Studying Abroad Foundation Project of China
文摘In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(CXLX13-949) supported by the Research and Innovation Project for College Graduates of Jiangsu Province,China+1 种基金Project(51174285) supported by the National Natural Science Foundation of ChinaProject(SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.