为了减小旋流器的短路流流量,提高旋流分离性能,研究提出了一种“喇叭型”溢流管旋流器,并通过数值模拟的方法,对不同尺寸“喇叭型”溢流管旋流器的压力场、速度场、湍流强度和分离效率进行了探讨。结果表明:随着“喇叭”长度的增加,静...为了减小旋流器的短路流流量,提高旋流分离性能,研究提出了一种“喇叭型”溢流管旋流器,并通过数值模拟的方法,对不同尺寸“喇叭型”溢流管旋流器的压力场、速度场、湍流强度和分离效率进行了探讨。结果表明:随着“喇叭”长度的增加,静压最大值从150.5 k Pa降低到139.7 k Pa,较低的静压可以减少能量消耗;“喇叭型”溢流管旋流器的轴向速度低于常规旋流器,颗粒在“喇叭型”溢流管旋流器内停留时间更长,分离更彻底;随着“喇叭”长度的增加,分流比和短路流流量都减小,降低了颗粒“错配”的数量;湍流强度随“喇叭”长度的增加而趋于平稳,使流场更加稳定;随着“喇叭”长度的增加,陡度指数先增大后减小,“喇叭”长度为20 mm时陡度指数最大,分离精度最高。展开更多
文摘为了减小旋流器的短路流流量,提高旋流分离性能,研究提出了一种“喇叭型”溢流管旋流器,并通过数值模拟的方法,对不同尺寸“喇叭型”溢流管旋流器的压力场、速度场、湍流强度和分离效率进行了探讨。结果表明:随着“喇叭”长度的增加,静压最大值从150.5 k Pa降低到139.7 k Pa,较低的静压可以减少能量消耗;“喇叭型”溢流管旋流器的轴向速度低于常规旋流器,颗粒在“喇叭型”溢流管旋流器内停留时间更长,分离更彻底;随着“喇叭”长度的增加,分流比和短路流流量都减小,降低了颗粒“错配”的数量;湍流强度随“喇叭”长度的增加而趋于平稳,使流场更加稳定;随着“喇叭”长度的增加,陡度指数先增大后减小,“喇叭”长度为20 mm时陡度指数最大,分离精度最高。