In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and...In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
基金Project(51775480)supported by the National Natural Science Foundation of ChinaProjects(E2018203143,E2022203050)supported by the Natural Science Foundation of Hebei Province,China。
文摘In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.