This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equation...This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities.展开更多
Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on mu...Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.展开更多
文摘This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities.
基金Project(2020JJ4032)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.