In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) w...This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) was applied to establishing the quantitative chemical fingerprints of ATRs. A total of 104 volatile compounds were identified and quantified with the information of mass spectra and retention index (RI). Furthermore, least absolute shrinkage and selection operator (LASSO), a sparse regularization method, combined with subsampling was employed to improve the classification ability of partial least squares-discriminant analysis (PLS-DA). After variable selection by LASSO, three chemical markers,β-elemene, α-selinene and α-asarone, were identified for the discrimination of ATRs from two habitats, and the total classification correct rate was increased from 82.76% to 96.55%. The proposed LASSO-PLS-DA method can serve as an efficient strategy for screening marked chemical components and geo-herbalism research of traditional Chinese medicines.展开更多
The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), a...The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), alternative moving window factor analysis (AMWFA) algorithms and normalization method based on the peak areas; the flavones in the barks and leaves of Eucommia ulmoides Oliver were separated on an ODS column by gradient elution carried out with the flow phase consisting of water, methanol and phosphoric acid (0.1%), and their contents were quantitatively determined by standard curve method and diode array detection (DAD) at 362 nm. The results show that 68 and 73 compounds respectively from essential oils of the barks and leaves of Eucommia ulmoides Oliver are identified, and there are 33 mutual compounds among 108 compounds determined. The total contents of these volatile components of the two samples possess 92.9% and 97.75% of the gross of the relevant essential oils, respectively; the contents of the rutin, quercetin and kaempferol in the barks and leaves of Eucommia ulmoides Oliver are 0.016 9, 0.003 6, 0.002 1 and 0.064 4, 0.030 2, 0.010 0 mg/g, respectively, and the determination recoveries are 95.2%-106.2%. The comparative analysis shows that for the barks and leaves of Eucommia ulmoides Oliver, there are significant differences in their components of the relevant essential oils and flavones.展开更多
Flotation experiments were performed to investigate the separation of muscovite and quartz in the presence of dodecylamine(DDA), tallow amine(TTA) and dodecyltrimethylammonium bromide(DTAC). The adsorption mechanisms ...Flotation experiments were performed to investigate the separation of muscovite and quartz in the presence of dodecylamine(DDA), tallow amine(TTA) and dodecyltrimethylammonium bromide(DTAC). The adsorption mechanisms of these three kinds of amines on muscovite and quartz were studied by FT-IR spectrum analysis, contact angle measurement and molecular dynamics(MD) simulation. The results reveal that the separation of muscovite from quartz is feasible at strong acid pulp condition using amine collectors. TTA and DTAC show poorer collecting ability for flotation of the two minerals compared with DDA. Physical adsorption is found to be the main adsorption module of amine collectors on muscovite and quartz by FT-IR analysis. MD simulation results show a strong physical adsorption ability of DDA+ cation on muscovite and quartz(muscovite(001):-117.31 kJ/mol, quartz(100):-89.43 kJ/mol), while neutral DDA molecular can hardly absorb onto the surface of these two minerals. These findings provide a novel explanation for the flotation mechanism from the perspective of MD simulation.展开更多
The chemical nature of the interaction of starch and dodecylamine (DDA), which generally act as depressant and collector, respectively, in the reverse flotation of bauxite, was investigated using starch-iodine tests...The chemical nature of the interaction of starch and dodecylamine (DDA), which generally act as depressant and collector, respectively, in the reverse flotation of bauxite, was investigated using starch-iodine tests. The results obtained from the blue-value measurements for starch+DDA+iodine system indicate the formation of the inclusion complex for amylose-DDA system at low DDA concentration (〈2 retool/L). However, it is less likely for amylopectin-DDA system with short helix. UV-Vis spectra of starch-iodine complexes show that each helix of amylose can accommodate two DDA molecules locating separately at its two ends, and in the helical cavity there is room available for the upcoming iodine. When concentrated DDA is tested, amylose-DDA system exhibits no characteristic starch-iodine color, owing to the presence of a compact coating of DDA molecules on starch via hydroxyl/amine hydrogen bonding. ^1H NMR spectroscopy and surface tension determination help to clarify the interaction mechanism of amylose with DDA.展开更多
2,4-diphenylpentane- and 2,4-di-p-tolylpentane-2,4-diols were investigated employing experimental and density functional theory (DFT) method at B3LYP/6-31G (d) level. The structure of syn-2,4-di-p-tolylpentane-2,4...2,4-diphenylpentane- and 2,4-di-p-tolylpentane-2,4-diols were investigated employing experimental and density functional theory (DFT) method at B3LYP/6-31G (d) level. The structure of syn-2,4-di-p-tolylpentane-2,4-diol (2b) was characterized by X-ray diffraction and compared with the crystal structures of anti- and syn-2,4-diphenylpentane-2,4-diols (la and lb). X-ray diffraction indicates that inter and intra-molecular hydrogen bonds are formed in the crystal structures. There is n-n staking interaction in lb and 2b. Good linear correlations and similar results are found between the experimental 1H and 13C NMR chemical shifts (6~exp) and GIAO (Gauge Independent Atomic Orbital) method calculated magnetic isotropic shielding tensors (acalc). HOMO and LUMO molecular orbitals were calculated at the same levels with the different results. UV-vis absorption spectra of the compounds were recorded in EtOH, MeCN, n-BuOH and cyclohexane with different dielectric constants. It is found that the solvent effect is obvious when e is 24.85(EtOH), 35.69(MeCN) and it is weak when e is decreased to 17.33(n-BuOH), 1.18 (cyclohexane).展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金Project(21465016)supported by the National Natural Foundation of China
文摘This study is intended to explore the chemical differences of Acori Tatarinowii Rhizoma (ATR) samples collected from two habitats, Sichuan and Anhui provinces, China. Gas chromatography-mass spectrometry (GC-MS) was applied to establishing the quantitative chemical fingerprints of ATRs. A total of 104 volatile compounds were identified and quantified with the information of mass spectra and retention index (RI). Furthermore, least absolute shrinkage and selection operator (LASSO), a sparse regularization method, combined with subsampling was employed to improve the classification ability of partial least squares-discriminant analysis (PLS-DA). After variable selection by LASSO, three chemical markers,β-elemene, α-selinene and α-asarone, were identified for the discrimination of ATRs from two habitats, and the total classification correct rate was increased from 82.76% to 96.55%. The proposed LASSO-PLS-DA method can serve as an efficient strategy for screening marked chemical components and geo-herbalism research of traditional Chinese medicines.
基金Project(20235020) supported by the National Natural Science Foundation of China
文摘The chemical components of the essential oils in the barks and leaves of Eucommia ulmoides Oliver were analyzed and compared by chromatograms and mass spectra technique, heuristic evolving latent projections (HELP), alternative moving window factor analysis (AMWFA) algorithms and normalization method based on the peak areas; the flavones in the barks and leaves of Eucommia ulmoides Oliver were separated on an ODS column by gradient elution carried out with the flow phase consisting of water, methanol and phosphoric acid (0.1%), and their contents were quantitatively determined by standard curve method and diode array detection (DAD) at 362 nm. The results show that 68 and 73 compounds respectively from essential oils of the barks and leaves of Eucommia ulmoides Oliver are identified, and there are 33 mutual compounds among 108 compounds determined. The total contents of these volatile components of the two samples possess 92.9% and 97.75% of the gross of the relevant essential oils, respectively; the contents of the rutin, quercetin and kaempferol in the barks and leaves of Eucommia ulmoides Oliver are 0.016 9, 0.003 6, 0.002 1 and 0.064 4, 0.030 2, 0.010 0 mg/g, respectively, and the determination recoveries are 95.2%-106.2%. The comparative analysis shows that for the barks and leaves of Eucommia ulmoides Oliver, there are significant differences in their components of the relevant essential oils and flavones.
基金Project(52012BAB07B0)supported by National "Twelfth Five-Year" Plan for Science&Technology Support,ChinaProject(2013zzts066)supported by the Graduate Student Self-innovation Program from Central South University,China
文摘Flotation experiments were performed to investigate the separation of muscovite and quartz in the presence of dodecylamine(DDA), tallow amine(TTA) and dodecyltrimethylammonium bromide(DTAC). The adsorption mechanisms of these three kinds of amines on muscovite and quartz were studied by FT-IR spectrum analysis, contact angle measurement and molecular dynamics(MD) simulation. The results reveal that the separation of muscovite from quartz is feasible at strong acid pulp condition using amine collectors. TTA and DTAC show poorer collecting ability for flotation of the two minerals compared with DDA. Physical adsorption is found to be the main adsorption module of amine collectors on muscovite and quartz by FT-IR analysis. MD simulation results show a strong physical adsorption ability of DDA+ cation on muscovite and quartz(muscovite(001):-117.31 kJ/mol, quartz(100):-89.43 kJ/mol), while neutral DDA molecular can hardly absorb onto the surface of these two minerals. These findings provide a novel explanation for the flotation mechanism from the perspective of MD simulation.
基金Project(50804055) supported by the National Natural Science Foundation of China
文摘The chemical nature of the interaction of starch and dodecylamine (DDA), which generally act as depressant and collector, respectively, in the reverse flotation of bauxite, was investigated using starch-iodine tests. The results obtained from the blue-value measurements for starch+DDA+iodine system indicate the formation of the inclusion complex for amylose-DDA system at low DDA concentration (〈2 retool/L). However, it is less likely for amylopectin-DDA system with short helix. UV-Vis spectra of starch-iodine complexes show that each helix of amylose can accommodate two DDA molecules locating separately at its two ends, and in the helical cavity there is room available for the upcoming iodine. When concentrated DDA is tested, amylose-DDA system exhibits no characteristic starch-iodine color, owing to the presence of a compact coating of DDA molecules on starch via hydroxyl/amine hydrogen bonding. ^1H NMR spectroscopy and surface tension determination help to clarify the interaction mechanism of amylose with DDA.
基金Projects(21072053,20772028)supported by the National Natural Science Foundation of ChinaProjects(10K025,11C0527)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(LKF0901)supported by the Open Foundation of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,Hunan University of Science and Technology,China
文摘2,4-diphenylpentane- and 2,4-di-p-tolylpentane-2,4-diols were investigated employing experimental and density functional theory (DFT) method at B3LYP/6-31G (d) level. The structure of syn-2,4-di-p-tolylpentane-2,4-diol (2b) was characterized by X-ray diffraction and compared with the crystal structures of anti- and syn-2,4-diphenylpentane-2,4-diols (la and lb). X-ray diffraction indicates that inter and intra-molecular hydrogen bonds are formed in the crystal structures. There is n-n staking interaction in lb and 2b. Good linear correlations and similar results are found between the experimental 1H and 13C NMR chemical shifts (6~exp) and GIAO (Gauge Independent Atomic Orbital) method calculated magnetic isotropic shielding tensors (acalc). HOMO and LUMO molecular orbitals were calculated at the same levels with the different results. UV-vis absorption spectra of the compounds were recorded in EtOH, MeCN, n-BuOH and cyclohexane with different dielectric constants. It is found that the solvent effect is obvious when e is 24.85(EtOH), 35.69(MeCN) and it is weak when e is decreased to 17.33(n-BuOH), 1.18 (cyclohexane).