期刊文献+
共找到203,475篇文章
< 1 2 250 >
每页显示 20 50 100
基于IHHO-Stacking集成模型的车辆驾驶性评估
1
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stacking 集成模型 客观评价
在线阅读 下载PDF
面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法
2
作者 李志 张书毕 +6 位作者 李鸣庚 陈强 卞和方 李世金 高延东 张艳锁 张帝 《自然资源遥感》 北大核心 2025年第4期12-20,共9页
合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的... 合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的改进分布式目标InSAR(distributed scatterer InSAR,DS-InSAR)方法。该方法采用置信区间假设检验算法识别同质像元并基于相位三角剖分算法完成相位优化,随后去除先期利用Stacking技术模拟的线性形变相位获取残余相位,进而稀疏形变相位条纹,提高后续DS-InSAR处理框架中时空滤波与三维解缠结果的精确性,最终补偿模拟相位获得完整形变场。通过处理2015年10月—2016年3月期间覆盖新巨龙煤矿的Sentinel-1A合成孔径雷达(synthetic aperture Radar,SAR)影像,解译了该时段内矿区时序地表形变特征,得到以下结论:监测期间,矿区存在3处显著形变,雷达视线向最大累积形变量达到-313 mm;所提方法相较常规短基线集干涉测量(small baseline subset InSAR,SBAS-InSAR)技术能够反演出分布更加均匀的监测点位信息,其密度约是SBAS-InSAR的12.9倍;对比水准数据的均方根误差(root mean squared error,RMSE)约为6.82 mm,精度较SBAS-InSAR提高了约3.0 mm。 展开更多
关键词 stacking DS-InSAR 地表形变 残余相位 矿区监测
在线阅读 下载PDF
基于VMD-DBO-Stacking集成学习的盾构掘进速度预测模型
3
作者 邓子昂 张玉贤 张继勋 《水电能源科学》 北大核心 2025年第9期101-105,共5页
针对现有盾构掘进速度预测方法存在的模型算法单一、精度不高和泛化性较差等问题,为了提高盾构掘进速度预测精度,建立一种基于变分模态分解(VMD)、蜣螂优化算法(DBO)和Stacking(VMD-DBO-Stacking)集成学习的盾构掘进速度预测模型。首先... 针对现有盾构掘进速度预测方法存在的模型算法单一、精度不高和泛化性较差等问题,为了提高盾构掘进速度预测精度,建立一种基于变分模态分解(VMD)、蜣螂优化算法(DBO)和Stacking(VMD-DBO-Stacking)集成学习的盾构掘进速度预测模型。首先,为了得到更有效的数据,采用VMD对原始数据进行分解重构得到去噪后的施工参数数据用于后续模型预测;其次,基于集成学习策略,选取支持向量回归(SVR)模型、随机森林(RF)模型、极端梯度提升(XGBoost)模型作为基学习器,高斯过程回归(GPR)模型作为元学习器,从而构建预测精度更高、泛化性更强的Stacking集成学习预测模型;然后,为了进一步提高预测精度,采用DBO对集成学习模型进行超参数优化;最后,将此预测模型用于河南某引水隧洞工程盾构施工中并与其他预测模型进行对比。结果表明,与其他单一模型(SVR、RF、XGBoost)相比,所建模型具有更高的预测精度,平均精度分别提升7.76%、6.70%、4.97%,为盾构掘进速度预测提供一种新思路。 展开更多
关键词 盾构 掘进速度 变分模态分解 蜣螂优化算法 stacking集成学习
在线阅读 下载PDF
混合ABC-Stacking机器学习的钻孔数据地层三维隐式建模方法
4
作者 邓怡徽 邹艳红 李延申 《成都理工大学学报(自然科学版)》 北大核心 2025年第5期1020-1034,共15页
地层三维模型能够直观、准确地反映场地地下空间地质结构特征,对于地下空间的开发利用具有重要意义。然而,有限的钻孔地质勘探数据使得构建精细地层三维模型困难。本文提出了一种基于钻孔数据的混合堆叠(Stacking)机器学习策略,在少量... 地层三维模型能够直观、准确地反映场地地下空间地质结构特征,对于地下空间的开发利用具有重要意义。然而,有限的钻孔地质勘探数据使得构建精细地层三维模型困难。本文提出了一种基于钻孔数据的混合堆叠(Stacking)机器学习策略,在少量钻孔数据基础上构建虚拟钻孔网络数据集,开展地层三维隐式建模。首先采用人工蜂群算法(artificial bee colony algorithm,ABC)从常见的几种机器学习算法中构建优化的Stacking集成学习模型,学习已有钻孔数据的地层分类分布特征,构建虚拟钻孔的地层分类数据集;然后基于径向基隐函数建模方法构建地层三维模型;最后引入地质剖面重合度定量指标进行模型评价分析。实例结果显示,Stacking集成学习模型在测试集上的F1分数和准确率分别达到88%和89%。相比单一机器学习模型,.混合ABC-Stacking机器学习模型在地层分类预测中具有更高的分类准确性,表明此方法能够有效提高局部地层分类的精细程度。构建的地层三维模型剖面与实际勘探剖面图地层重合度平均达78.38%,进一步证实了此方法的有效性,为地下结构三维精细建模提供思路。 展开更多
关键词 地层三维建模 stacking集成策略 隐式建模 机器学习 人工蜂群算法
在线阅读 下载PDF
基于HHO-Stacking的多模型融合驾驶分心识别
5
作者 翟凤娜 郑明强 付佳辉 《农业装备与车辆工程》 2025年第8期87-93,98,共8页
聚焦2种驾驶分心状态,提出基于哈里斯鹰算法优化的Stacking集成模型的集成融合驾驶分心识别模型,以提高识别准确性。先开展模拟试验,收集眼动与驾驶绩效多模态数据;再用高度比较时间序列分析法提取特征,经VLOOKUP函数处理和主成分分析降... 聚焦2种驾驶分心状态,提出基于哈里斯鹰算法优化的Stacking集成模型的集成融合驾驶分心识别模型,以提高识别准确性。先开展模拟试验,收集眼动与驾驶绩效多模态数据;再用高度比较时间序列分析法提取特征,经VLOOKUP函数处理和主成分分析降维,依此建立识别特征集;最后输入降维特征验证模型。实验表明,相比其他经典识别模型,该模型对不同分心类型状态识别准确率可达90.33%。较基础模型显著提升了输入维度和输出精度,为异常驾驶状态的识别提供了新思路。 展开更多
关键词 智能交通 驾驶分心 stacking集成算法 哈里斯鹰算法 信号时频特征
在线阅读 下载PDF
Mechanical and impact behaviour of titanium-based fiber metal laminates reinforced with kevlar and jute fibers under various stacking configurations
6
作者 V.Subramanian K.Logesh +1 位作者 Renjin J.Bright P.Hariharasakthisudhan 《Defence Technology(防务技术)》 2025年第11期19-30,共12页
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T... The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications. 展开更多
关键词 Titanium-based fiber metal laminates(FMLs) Kevlar-jute hybrid fibers Mechanical properties stacking configuration Drop-weight test
在线阅读 下载PDF
基于stacking融合机制的自动驾驶伦理决策模型 被引量:2
7
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用 被引量:1
8
作者 罗水亮 漆影强 +4 位作者 唐松 阮基富 高达 刘乾乾 李生 《特种油气藏》 北大核心 2025年第4期58-67,共10页
针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂... 针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂岩性的识别准确性和稳定性。相比传统方法,该模型能够更有效地捕捉测井数据的非线性关系,并降低不同岩性类别间的预测混淆度。研究结果表明:该方法在四川盆地川中地区碳酸盐岩储层的岩性识别精度达到96%,较传统模型提升6个百分点,且平均相对误差更低,预测效果更优。改进的Stacking算法结合高效计算框架,可显著提升训练和预测效率,使岩性识别更加高效、可靠。该方法可有效地识别复杂岩性,为碳酸盐岩储层岩性识别提供参考。 展开更多
关键词 stacking 集成学习 特征加权 碳酸盐岩 岩性识别
在线阅读 下载PDF
Stacking算法对凝给水系统故障诊断的适用性研究 被引量:1
9
作者 陈砚桥 孙彤 顾任利 《舰船科学技术》 北大核心 2025年第1期138-142,共5页
针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状... 针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状,以传统单一机器学习算法为基础,通过拓展建立针对Stacking算法的多分类器性能评价指标,准确寻找运行参数和故障之间的映射关系,解决了多分类器性能评价难题。并利用样本数据设计出比较Stacking算法和单一算法综合性能的试验方法,验证了Stacking模型在凝给水系统故障诊断任务中的适用性和优越性。 展开更多
关键词 凝给水系统 stacking算法 故障诊断
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
10
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 stacking集成学习
在线阅读 下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测 被引量:1
11
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 stacking集成学习 金豺优化算法 复合指标
在线阅读 下载PDF
基于Stacking集成学习的土壤侵蚀速率计算与主导因子分析--以三峡库区奉节县为例 被引量:3
12
作者 林娜 潘鹏 +3 位作者 王斌 张迪 冯珊珊 潘建平 《中国水土保持科学》 CSCD 北大核心 2023年第4期100-112,共13页
土壤侵蚀速率的计算是水土保持工作的关键之一。为提高计算精度,引入Stacking集成方法,利用其能充分融合不同机器学习模型的特点,获取高精度的土壤侵蚀速率空间分布数据并分析影响研究区土壤侵蚀速率的主导因子。基于重庆市奉节县三峡库... 土壤侵蚀速率的计算是水土保持工作的关键之一。为提高计算精度,引入Stacking集成方法,利用其能充分融合不同机器学习模型的特点,获取高精度的土壤侵蚀速率空间分布数据并分析影响研究区土壤侵蚀速率的主导因子。基于重庆市奉节县三峡库区2018年降雨量、遥感影像等数据构建特征集,以奉节县土壤侵蚀速率真实数据作为基准,通过训练不同机器学习模型,使用精度评价指标和多样性度量来建立最优的基学习器和元学习器组合,构建Stacking模型并获取土壤侵蚀速率空间分布图,然后针对土壤侵蚀速率分布规律对其主导因子进行边际依赖性分析。结果表明:1)以轻型梯度提升机、随机森林为基学习器,线性回归器为元学习器的Stacking集成模型效果最优,平均绝对误差、均方根误差和决定系数的表现分别为252.48 t/(km^(2)·a)、537.78 t/(km^(2)·a)和0.8687;2)高程、降雨量、植被覆盖、坡度、距道路距离和距水源距离对奉节县土壤侵蚀速率影响程度排序位于前6,重要性所占比例均超过9%;3)在高程200~520 m,年总降雨量高于1250 mm,NDVI为0.24~0.27,坡度在26°~35°之间,距道路距离0~220 m,距水源地距离63~387 m的地区土壤侵蚀速率较高。综上,构建的Stacking模型能够有效融合不同模型优势,提升预测土壤侵蚀速率的精度;奉节县土壤侵蚀速率受多方面因素综合影响,总体上与高程、植被覆盖程度之间呈正相关关系,与降雨量、坡度之间呈负相关关系,较高速率的土壤侵蚀倾向于发生在降雨充沛、植被覆盖度低、距道路及水源较近的低海拔陡峭区域。 展开更多
关键词 机器学习 土壤侵蚀 stacking 优化集成 主导因子分析
在线阅读 下载PDF
基于高光谱数据和Stacking集成学习算法的金矿品位快速反演
13
作者 毛亚纯 夏安妮 +4 位作者 曹旺 刘晶 文杰 贺黎明 陈煊赫 《光谱学与光谱分析》 北大核心 2025年第7期2061-2067,共7页
金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药... 金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药剂污染等多种问题,无法实现基于实时品位信息的矿石品位与选矿方法的自动化调整。相比之下,可见光-近红外光谱分析法因其高效、绿色环保及原位测定等优势,逐渐成为估算矿区金属品位的有效替代方法。为此以中国辽宁省二道沟、凌源和排山楼三个金矿为研究区,共采集了389个金矿样本,以SVC便携式地物光谱仪测试的高光谱数据和化学分析数据为数据源。首先对原始光谱数据进行Savitzky-Golay平滑(SG)处理,并分析金矿的光谱特征,发现反射率与金品位具有一定相关性,且在455 nm处具有金的吸收特征,基于此,利用主成分分析法(PCA)、等距特征映射(ISOMAP)和局部线性嵌入(LLE)算法对原始光谱数据进行降维处理,对应降维结果的维数分别为6,5,5。最后基于随机森林(RF)、极端随机树(ET)、决策树(DT)、梯度提升树(GBDT)和自适应增强(Adaboost)、极端梯度提升树(XGBoost)和Stacking集成学习算法对降维后的数据建立了金品位预测模型。研究结果表明,Stacking集成学习方法在各方面性能均优于单一模型,其中LLE-Stacking组合模型的精度最高,预测值与真实值的R^(2)为0.972,RPD为5.935,平均相对误差为0.231。利用本方法可以快速准确预测矿粉中金的品位,相比于传统模型的品位反演精度有明显的提升,为矿山金品位的快速、原位测定提供了新的技术手段,对金矿的高效开采具有重要意义。 展开更多
关键词 金矿品位反演 可见光-近红外光谱 降维 stacking集成学习
在线阅读 下载PDF
基于mRMR-BO优化Stacking集成模型的NO_(x)浓度动态软测量 被引量:6
14
作者 金秀章 乔鹏 史德金 《热力发电》 CAS CSCD 北大核心 2023年第10期122-128,共7页
针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance... 针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance and min-redundancy,mRMR)结合贝叶斯优化算法(Bayesian optimization,BO)优化Stacking集成模型的SCR烟气脱硝系统入口NO_(x)质量浓度动态软测量模型。针对动态NO_(x)生成过程中静态单一模型预测精度降低及辅助变量与入口NO_(x)质量浓度时间异步的问题,利用mRMR-BO结合模型进行辅助变量筛选,Copula熵(copula entropy,CE)确定辅助变量迟延,BO结合模型确定辅助变量阶次,将TCN及LASSO利用Stacking法集成,使用含有迟延时间及阶次信息的辅助变量构建动态Stacking集成软测量模型。仿真结果显示:集成模型较TCN及LASSO单一网络的均方根误差、平均绝对误差、平均绝对百分比误差最小;动态集成模型对比静态集成模型,预测精度更高,能够实现对入口NO_(x)质量浓度的准确软测量。 展开更多
关键词 NO_(x)动态建模 最大相关-最小冗余 贝叶斯优化 stacking集成模型
在线阅读 下载PDF
融合Stacking框架的BiGRU-LGB云负载预测模型 被引量:6
15
作者 刘惠 董锡耀 杨志涵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期83-94,104,共13页
随着云计算技术的飞速发展,越来越多的用户将应用部署在云平台上.。平台内集群资源的调度可以提高云平台数据中心的实际利用率,而高效的云平台负载预测是解决集群资源调度问题的关键技术,因此本文建立了一种融合Stacking框架、多层BiGR... 随着云计算技术的飞速发展,越来越多的用户将应用部署在云平台上.。平台内集群资源的调度可以提高云平台数据中心的实际利用率,而高效的云平台负载预测是解决集群资源调度问题的关键技术,因此本文建立了一种融合Stacking框架、多层BiGRU网络和LightGBM算法的云负载预测模型。该模型的结构主要包括两种学习器:首先是初级学习器,使用时间编码层处理原始负载序列并利用BiGRU网络参数少、信息学习完整的特点减少模型训练时间和隐藏层数,学习负载序列中的时间维度信息;使用经过特征工程处理的原始负载序列来高效训练LightGBM算法,学习负载序列中的特征维度信息。然后是次级学习器,利用GRU网络整合时间和特征维度的负载信息,完成整个负载预测模型的训练。通过两层学习器的共同学习提高整体负载预测模型的预测精度。在华为云集群数据集上进行实验,结果表明,与传统的单一预测模型BiGRU、LightGBM等以及现有的组合预测模型GRU-LSTM相比,融合Stacking的BiGRU-LGB模型的预测精度提升约13%,训练时间开销得到一定程度的降低。 展开更多
关键词 云平台 负载预测 双向门控循环单元 LightGBM stacking集成框架
在线阅读 下载PDF
基于Stacking集成学习的空管危险源数据分类
16
作者 王洁宁 闫思卿 孙禾 《科学技术与工程》 北大核心 2025年第20期8583-8594,共12页
在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下... 在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下迫切需要开发适用于空管系统的高效分类方法,以提高飞行安全水平。针对单一学习器用于空管危险源文本分类存在的类别分布较多,难以捕捉类别数据不平衡时的文本特征导致预测精度下降的问题,提出基于Stacking训练思想的、两次加权的改进集成模型。首先,参考双防机制对危险源和安全隐患完成类别划分;再采用词频-逆文档频率(term frequency-inverse document frequency, TF-IDF)算法提取预处理后的危险源文本特征完成向量化,并利用合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)和自适应合成过采样算法(adaptive synthetic sampling approach, ADASYN)分别随机生成向量化后的少数类文本,使文本数据集的类别分布趋于平衡;再从基学习器每折交叉验证的F1分数加权和基学习器之间敏感性评估机制动态加权两方面改进Stacking集成模型,提高类别不平衡危险源文本的分类性能。在所构建的数据集上的实验结果表明:相较于SMOTE+改进集成模型,ADASYN+改进集成模型的精确率、召回率和F1分数分别提升0.9、1.1和1.0个百分点,较好地抑制处理多数类别过拟合的问题,实验结果验证了所提算法的有效性。 展开更多
关键词 双防机制 空管危险源 文本分类 自适应合成过采样算法(ADASYN) stacking集成模型
在线阅读 下载PDF
基于FIR-Stacking的刀具磨损预测 被引量:1
17
作者 李备备 陈春晓 +1 位作者 郑飂默 张强 《组合机床与自动化加工技术》 北大核心 2024年第4期87-91,共5页
针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征... 针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征,并对同一信号的多源信号特征进行拼接,经Pearson相关系数筛选保留相关系数大于0.2的特征;最后,以LightGBM、支持向量回归(support vector regression,SVR)、多层感知机(multilayer perceptron,MLP)作为基模型,Lasso作为元模型,构建Stacking集成模型进行刀具磨损预测。使用铣削加工数据集进行验证,结果表明该方法可有效提高预测准确性。 展开更多
关键词 刀具磨损预测 FIR滤波器 stacking集成模型 机器学习
在线阅读 下载PDF
基于Stacking融合的LSTM-SA-RBF短期负荷预测 被引量:2
18
作者 方娜 邓心 肖威 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期131-137,共7页
为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简... 为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory,LSTM)-自注意力机制(self-attention mechanism,SA)、径向基(radial base functions,RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。 展开更多
关键词 奇异谱分析 stacking算法 长短期记忆网络 径向基神经网络 短期负荷预测
在线阅读 下载PDF
基于改进BS-Stacking模型的个人信用风险评估方法研究 被引量:1
19
作者 顾清华 宋思远 +1 位作者 张新生 暴子旗 《运筹与管理》 CSSCI CSCD 北大核心 2023年第8期137-144,共8页
在个人信用违约风险与日俱增的背景下,为了使企业准确识别个人信用风险,本文提出了基于改进BS-Stacking模型的个人信用风险评估方法。针对个人信用风险数据的特点,首先对数据使用改进后的Borderline SMOTE-2算法进行过采样处理,然后使... 在个人信用违约风险与日俱增的背景下,为了使企业准确识别个人信用风险,本文提出了基于改进BS-Stacking模型的个人信用风险评估方法。针对个人信用风险数据的特点,首先对数据使用改进后的Borderline SMOTE-2算法进行过采样处理,然后使用网格搜索算法对分类器进行参数寻优,为了寻找模型的最优组合,使用逻辑回归对基模型进行贡献度分析,从而确定Stacking模型。实验表明所提出模型与各类集成算法相比,在个人信用风险评估违约样本的识别率上以及稳定性等各类指标上均有最好表现,验证了模型的有效性。 展开更多
关键词 信用风险评估 分类 Borderline SMOTE-2 堆叠模型
在线阅读 下载PDF
基于XGBoost特征选择的疾病诊断XLC-Stacking方法 被引量:21
20
作者 岳鹏 侯凌燕 +1 位作者 杨大利 佟强 《计算机工程与应用》 CSCD 北大核心 2020年第17期136-141,共6页
针对医学疾病数据中存在特征冗余的问题,以XGBoost特征选择方法度量特征重要度,删除冗余特征,选择最佳分类特征;针对识别精度不高的问题,使用Stacking方法集成XGBoost、LightGBM等多种异质分类器,并在异质分类器中引入性能更好的CatBoos... 针对医学疾病数据中存在特征冗余的问题,以XGBoost特征选择方法度量特征重要度,删除冗余特征,选择最佳分类特征;针对识别精度不高的问题,使用Stacking方法集成XGBoost、LightGBM等多种异质分类器,并在异质分类器中引入性能更好的CatBoost分类器提升集成分类器分类精度。为了避免过拟合,选择基层分类器输出的分类概率作为高层分类器输入。实验结果表明,提出的基于XGBoost特征选择的XLC-Stacking方法相比当前主流分类算法以及单一的XGBoost算法和Stacking方法有较大提升,识别的准确率和F1-Score达到97.73%和98.21%,更加适用于疾病的诊断。 展开更多
关键词 疾病诊断 特征选择 XGBoost CatBoost stacking
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部