期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
ε不敏感损失函数支持向量机分类性能研究 被引量:17
1
作者 杨俊燕 张优云 朱永生 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第11期1315-1320,共6页
将原先用于支持向量回归的ε不敏感损失函数引入到支持向量分类中,提出ε不敏感损失函数支持向量分类算法(-εSVC).同标准支持向量分类方法(C-SVC)和最小二乘支持向量分类方法(LS-SVC)相比较,试验结果表明:当赋予参数ε一个足够大的接近... 将原先用于支持向量回归的ε不敏感损失函数引入到支持向量分类中,提出ε不敏感损失函数支持向量分类算法(-εSVC).同标准支持向量分类方法(C-SVC)和最小二乘支持向量分类方法(LS-SVC)相比较,试验结果表明:当赋予参数ε一个足够大的接近于1的值时,-εSVC的分类正确率略低于C-SVC和LS-SVC,但是-εSVC的训练、测试和参数选择的速度要高于C-SVC和LS-SVC.特别是对于大规模数据集,这种优势将更加明显.另外,通过精确选择参数ε的值,-εSVC能够获得比C-SVC和LS-SVC更高的分类正确率,但是训练、测试和参数选择的速度却随着ε的减小而降低. 展开更多
关键词 ε不敏感损失函数 支持向量分类 模式分类 支持向量回归
在线阅读 下载PDF
径向基函数神经网络快速算法及其应用 被引量:7
2
作者 许敏 胡丽丹 《统计与决策》 CSSCI 北大核心 2021年第16期52-56,共5页
经典的径向基函数神经网络学习算法因其能逼近任意连续函数,因而应用广泛。但在实际应用中,当训练集有较大数据容量时,需要较高的计算代价,限制了其进一步应用。针对上述问题,文章通过引入ε不敏感损失函数和结构风险项,并借鉴核心集快... 经典的径向基函数神经网络学习算法因其能逼近任意连续函数,因而应用广泛。但在实际应用中,当训练集有较大数据容量时,需要较高的计算代价,限制了其进一步应用。针对上述问题,文章通过引入ε不敏感损失函数和结构风险项,并借鉴核心集快速算法,探讨适合大样本快速训练的径向基函数神经网络学习算法。将该算法应用于人造数据集和UCI真实数据集,并与传统的径向基函数神经网络学习算法相比,发现所提算法在大规模数据集场景下,具有更好的适应性。 展开更多
关键词 径向基函数神经网络 大规模数据集 核心集 ε不敏感损失函数
在线阅读 下载PDF
PSO-ε-SVM的回归算法 被引量:8
3
作者 金晶 王行愚 +1 位作者 罗先国 王蓓 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第7期872-875,共4页
回归支持向量机的ε不敏感损失函数的参数寻优是一个重要的问题,它与支持向量机的行为特性有紧密关系。本文给出了一种基于粒子群优化算法的、对ε不敏感损失函数的ε参数寻优的方法,仿真结果表明:采用基于粒子群优化算法的寻优方法寻... 回归支持向量机的ε不敏感损失函数的参数寻优是一个重要的问题,它与支持向量机的行为特性有紧密关系。本文给出了一种基于粒子群优化算法的、对ε不敏感损失函数的ε参数寻优的方法,仿真结果表明:采用基于粒子群优化算法的寻优方法寻找ε参数,需要重复训练回归支持向量机模型的次数明显小于格点搜索方法,节省了大量的时间并且能找到较优的ε值。 展开更多
关键词 回归支持向量机 粒子群优化算法 ε不敏感损失函数 格点搜索
在线阅读 下载PDF
ε-支持向量回归机算法及其应用 被引量:9
4
作者 冼广铭 曾碧卿 《计算机工程与应用》 CSCD 北大核心 2008年第17期40-42,共3页
针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点... 针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点。分析了ε-支持向量回归机理论算法及其在图像去噪中的应用,使用ε-支持向量回归机对图像进行滤波并且与最小值滤波、均值滤波和维纳滤波等常用的滤波方法相比较,还比较了SVM各种核函数对不同噪声的滤波效果和分析了不同阶数的Multi-nomial核的滤波效果。实验结果表明了ε-支持向量回归机能够有效地去除噪声,不但信噪比较高而且比较清晰,同时具有良好的稀疏性。 展开更多
关键词 ε-支持向量回归机 ε不敏感损失函数 图像去噪
在线阅读 下载PDF
一种具有迁移学习能力的RBF-NN算法及其应用 被引量:2
5
作者 许敏 史荧中 +1 位作者 葛洪伟 黄能耿 《智能系统学报》 CSCD 北大核心 2018年第6期959-966,共8页
经典的径向基人工神经网络学习能逼近任意函数,因而应用广泛。但其存在的一个重要缺陷是,在已标签样本过少、不能反映数据集整体分布情况下,容易产生过拟合现象,从而导致泛化性能严重下降。针对上述问题,探讨具有迁移学习能力的径向基... 经典的径向基人工神经网络学习能逼近任意函数,因而应用广泛。但其存在的一个重要缺陷是,在已标签样本过少、不能反映数据集整体分布情况下,容易产生过拟合现象,从而导致泛化性能严重下降。针对上述问题,探讨具有迁移学习能力的径向基人工神经网络学习算法,该算法在引入不敏感损失函数和结构风险项的同时,学习源领域径向基函数的中心向量及核宽和源领域模型参数,通过充分学习历史源领域知识来弥补当前领域因已标签样本少而导致泛化能力下降的不足。将该算法应用于人造数据集和真实发酵数据集进行验证,和传统的RBF神经网络算法相比,所提算法在已标签样本少而存在数据缺失的场景下,具有更好的适应性。 展开更多
关键词 径向基函数神经网络 迁移学习 径向基函数中心向量 ε不敏感损失函数 信息缺失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部