期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
δ-广义标签多伯努利滤波算法的非线性扩展 被引量:1
1
作者 齐美彬 胡晶晶 +1 位作者 程佩琳 靳学明 《系统工程与电子技术》 EI CSCD 北大核心 2021年第12期3571-3578,共8页
针对高斯混合(Gaussian mixture,GM)实现的变分贝叶斯-δ-广义标签多伯努利(variational Bayesian-δ-generalized labeled multi-Bernoulli,VB-δ-GLMB)滤波算法在非线性场景下跟踪性能较低这一问题,结合基于临近点算法(proximal point... 针对高斯混合(Gaussian mixture,GM)实现的变分贝叶斯-δ-广义标签多伯努利(variational Bayesian-δ-generalized labeled multi-Bernoulli,VB-δ-GLMB)滤波算法在非线性场景下跟踪性能较低这一问题,结合基于临近点算法(proximal point algorithm,PPA)和变分贝叶斯(variational Bayesian,VB)的迭代优化与容积卡尔曼滤波(cubature Kalman filtering,CKF),提出一种适用于非线性模型的机动多目标跟踪算法。该算法在GM-VB-δ-GLMB的基础上采用逆伽马(inverse-Gamma,IG)和高斯乘积混合分布近似量测噪声协方差和状态联合后验分布;利用PPA-CKF-VB(PCKF-VB)方法对传递过程中的高斯项参数进行预测更新;最后为提高滤波精度进行变分贝叶斯容积RTS(VB cubature Rauch-Tung-Striebel,VB-CRTS)平滑。仿真结果表明,对于量测噪声未知的非线性系统,所提的算法与现有的VB-δ-GLMB算法相比目标跟踪精度有显著提高。 展开更多
关键词 δ-广义标签多伯努利算法 非线性模型 容积卡尔曼滤波 临近点算法 变分贝叶斯近似
在线阅读 下载PDF
闪烁噪声统计特性未知情况下的鲁棒广义标签多伯努利滤波器 被引量:3
2
作者 侯利明 连峰 +1 位作者 谭顺成 徐从安 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1346-1353,共8页
为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽... 为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽了闪烁噪声均值为零的限制性假设,可以自适应地处理闪烁噪声均值未知且时变条件下的多目标跟踪问题.本文在GLMB滤波框架下,利用变分贝叶斯方法对增广状态中的参数进行变分迭代,并通过最小化Kullback⁃Leibler散度得到边缘似然函数的近似解.仿真结果表明,在闪烁噪声统计特性未知的情况下,所提滤波器能有效地对多目标进行跟踪. 展开更多
关键词 随机有限集 多目标跟踪 闪烁噪声 统计特性未知 变分贝叶斯推断 广义标签多伯努利滤波器
在线阅读 下载PDF
基于交互多模型的分组δ-广义标签多伯努利算法 被引量:3
3
作者 辛怀声 曹晨 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1128-1138,共11页
为了解决马尔科夫跳变系统广义标签多伯努利滤波器在多机动目标跟踪场景需要计算大量模式假设分支,并且需要频繁对假设分支进行剪枝,导致算法存在计算量过高并且影响跟踪精度的问题,提出一种基于交互多模型的分组δ-广义标签多伯努利滤... 为了解决马尔科夫跳变系统广义标签多伯努利滤波器在多机动目标跟踪场景需要计算大量模式假设分支,并且需要频繁对假设分支进行剪枝,导致算法存在计算量过高并且影响跟踪精度的问题,提出一种基于交互多模型的分组δ-广义标签多伯努利滤波器。滤波器采用航迹分组策略,不同组的航迹独立进行关联映射与分支权重计算,降低了关联的计算复杂度,可以实现不同航迹组之间并行滤波。另外,为了处理机动目标场景引入交互多模型,给出基于交互多模型的分组滤波递推方程。仿真结果表明,所提出的滤波器跟踪精度更高,计算速度更快,可以用于跟踪多个机动目标的场景。 展开更多
关键词 随机有限集 δ-广义标签多伯努利滤波器 多目标跟踪 交互多模型
在线阅读 下载PDF
基于未知探测概率的RAG-GLMB多目标跟踪算法
4
作者 邓宇浩 李琳 《中国惯性技术学报》 CSCD 北大核心 2024年第12期1191-1196,共6页
针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标... 针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标存活问题;并设计比例因子提高实际探测概率较低时自适应门限方法鲁棒性。仿真结果表明,未知探测概率下,所提算法目标数估计正确率较传统GLMB算法高20.5%,最优子模式分配(OSPA)距离少7 m,且在量测数据部分丢失和强杂波背景下具有较好的鲁棒性。 展开更多
关键词 多目标跟踪 广义标签多伯努利滤波器 自适应门限 未知探测概率
在线阅读 下载PDF
非线性量测下的机动多目标跟踪
5
作者 国强 任海宁 +1 位作者 周凯 戚连刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第5期64-73,共10页
为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过... 为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过去相关无偏量测转换实现位置量测从极坐标系到笛卡尔坐标系的无偏转换,并通过预测值去除量测误差和其协方差的相关性造成的滤波估计偏差,实现了非线性场景下的机动多目标跟踪;然后,通过航迹和量测的关联新息以及目标的机动约束构建联合波门,降低了杂波量测的数量;最后引入改进的模糊算法,以目标的模型后验概率为输入,根据模型的分离程度自适应调节运动模型的过程噪声,增加滤波精度。研究结果表明:在杂波环境下,通过与CKF-JMS-δ-GLMB、CKF-IMM-δ-GLMB等非线性多模型滤波器对比,所提算法计算时间较小,且跟踪精度更高,鲁棒性强。所提算法避免了传统的非线性处理方式计算量较大的问题,并且具有较好的杂波抑制特性,提升了非线性量测下机动多目标跟踪的性能。 展开更多
关键词 非线性量测 机动多目标 δ-广义标签多伯努利滤波器 量测转换 交互多模型 模糊算法
在线阅读 下载PDF
基于均方根容积卡尔曼的δ-GLMB多目标跟踪算法 被引量:3
6
作者 母晓慧 杨风暴 +2 位作者 刘哲 陶晓伟 张雅玲 《计算机应用与软件》 北大核心 2020年第4期164-170,共7页
在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(S... 在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(Square-rooted Cubature Kalman Filter,SCKF)的δ-GLMB高斯混合实现算法。基于三阶球面-径向容积准则选取一组等权的容积点集,对GM-δ-GLMB滤波器的伯努利分量传递过程中的高斯参量进行预测及更新,实现非线性模型系统下的目标跟踪。仿真结果表明,与现有的δ-GLMB滤波器的扩展卡尔曼滤波(Extended Kalman Filter,EKF)高斯混合实现及无迹卡尔曼滤波(Unscented Kalman Filter,UKF)高斯混合实现相比,该算法可提高非线性高杂波密度环境下的目标跟踪精度。 展开更多
关键词 非线性系统 均方根容积卡尔曼 δ-广义标签多伯努利 高斯混合 多目标跟踪
在线阅读 下载PDF
低空监视雷达“走-停-走”目标跟踪技术 被引量:2
7
作者 徐开明 王佰录 +2 位作者 李溯琪 邓云凯 王经鹤 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第3期443-458,共16页
以旋翼无人机为代表的低空小目标常采用低速“走-停”策略或利用障碍物遮挡,躲避雷达追踪,对重要信息装备和战略要地进行点穴式打击或干扰。这类目标可多次消失-重返于雷达视域,称之“走-停-走”目标。若采用传统目标跟踪模型和算法处... 以旋翼无人机为代表的低空小目标常采用低速“走-停”策略或利用障碍物遮挡,躲避雷达追踪,对重要信息装备和战略要地进行点穴式打击或干扰。这类目标可多次消失-重返于雷达视域,称之“走-停-走”目标。若采用传统目标跟踪模型和算法处理这类目标,易导致目标身份不连续、航迹碎片化。该文在随机集理论框架下,基于标签多伯努利(LMB)滤波器,研究低空监视雷达“走-停-走”目标连续跟踪问题。为描述“走-停-走”目标多次往返于雷达视域的演化特性,首次引入第3类出生目标模型,即重生(RB)过程模型。首先,利用目标重返雷达视域前-后目标状态的空间位置和动力学参数关系,提出一种基于空域相关(SC)的RB过程;然后,基于SC-RB过程,在贝叶斯滤波框架下,设计了SC-RB-LMB滤波器算法,可实现多“走-停-走”目标连续稳健跟踪,维持航迹标签的连续性;最后,在典型低空监视场景下,通过仿真和实测数据验证了提出模型和算法的有效性和性能优势。 展开更多
关键词 低空监视雷达 “走--走”目标跟踪 随机集理论 重生过程模型 标签多伯努利滤波器
在线阅读 下载PDF
一步数据关联GLMB扩展目标跟踪算法 被引量:6
8
作者 李翠芸 李洋 +1 位作者 姬红兵 石仁政 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第5期137-143,共7页
针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签... 针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签多伯努利滤波器相结合,实现在量测难以划分情况下的多扩展目标跟踪。仿真实验表明,该算法能够在交叉、近邻场景中实现对目标的有效跟踪,并且在估计精度方面优于传统的基于量测划分的扩展目标跟踪算法。 展开更多
关键词 扩展目标跟踪 乘性噪声模型 二阶扩展卡尔曼滤波算法 数据关联 广义标签多伯努利滤波器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部