期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
δ-广义标签多伯努利滤波算法的非线性扩展 被引量:1
1
作者 齐美彬 胡晶晶 +1 位作者 程佩琳 靳学明 《系统工程与电子技术》 EI CSCD 北大核心 2021年第12期3571-3578,共8页
针对高斯混合(Gaussian mixture,GM)实现的变分贝叶斯-δ-广义标签多伯努利(variational Bayesian-δ-generalized labeled multi-Bernoulli,VB-δ-GLMB)滤波算法在非线性场景下跟踪性能较低这一问题,结合基于临近点算法(proximal point... 针对高斯混合(Gaussian mixture,GM)实现的变分贝叶斯-δ-广义标签多伯努利(variational Bayesian-δ-generalized labeled multi-Bernoulli,VB-δ-GLMB)滤波算法在非线性场景下跟踪性能较低这一问题,结合基于临近点算法(proximal point algorithm,PPA)和变分贝叶斯(variational Bayesian,VB)的迭代优化与容积卡尔曼滤波(cubature Kalman filtering,CKF),提出一种适用于非线性模型的机动多目标跟踪算法。该算法在GM-VB-δ-GLMB的基础上采用逆伽马(inverse-Gamma,IG)和高斯乘积混合分布近似量测噪声协方差和状态联合后验分布;利用PPA-CKF-VB(PCKF-VB)方法对传递过程中的高斯项参数进行预测更新;最后为提高滤波精度进行变分贝叶斯容积RTS(VB cubature Rauch-Tung-Striebel,VB-CRTS)平滑。仿真结果表明,对于量测噪声未知的非线性系统,所提的算法与现有的VB-δ-GLMB算法相比目标跟踪精度有显著提高。 展开更多
关键词 δ-广义标签多伯努利算法 非线性模型 容积卡尔曼滤波 临近点算法 变分贝叶斯近似
在线阅读 下载PDF
基于交互多模型的分组δ-广义标签多伯努利算法 被引量:3
2
作者 辛怀声 曹晨 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1128-1138,共11页
为了解决马尔科夫跳变系统广义标签多伯努利滤波器在多机动目标跟踪场景需要计算大量模式假设分支,并且需要频繁对假设分支进行剪枝,导致算法存在计算量过高并且影响跟踪精度的问题,提出一种基于交互多模型的分组δ-广义标签多伯努利滤... 为了解决马尔科夫跳变系统广义标签多伯努利滤波器在多机动目标跟踪场景需要计算大量模式假设分支,并且需要频繁对假设分支进行剪枝,导致算法存在计算量过高并且影响跟踪精度的问题,提出一种基于交互多模型的分组δ-广义标签多伯努利滤波器。滤波器采用航迹分组策略,不同组的航迹独立进行关联映射与分支权重计算,降低了关联的计算复杂度,可以实现不同航迹组之间并行滤波。另外,为了处理机动目标场景引入交互多模型,给出基于交互多模型的分组滤波递推方程。仿真结果表明,所提出的滤波器跟踪精度更高,计算速度更快,可以用于跟踪多个机动目标的场景。 展开更多
关键词 随机有限集 δ-广义标签多伯努利滤波器 多目标跟踪 交互多模型
在线阅读 下载PDF
自适应目标新生δ广义标签多伯努利滤波算法 被引量:6
3
作者 李翠芸 陈东伟 石仁政 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第2期12-16,共5页
针对传统广义标签多伯努利滤波算法因需已知新生目标状态分布信息而导致在实际场景中估计精度下降的问题,提出一种新的自适应目标新生δ广义标签多伯努利算法。该算法以广义标签多伯努利滤波器为基础,利用上一时刻接收到的量测信息反推... 针对传统广义标签多伯努利滤波算法因需已知新生目标状态分布信息而导致在实际场景中估计精度下降的问题,提出一种新的自适应目标新生δ广义标签多伯努利算法。该算法以广义标签多伯努利滤波器为基础,利用上一时刻接收到的量测信息反推当前时刻新生目标的存活概率和状态信息,并给出其标签伯努利随机集的参数表示。仿真结果表明,所提算法对于未知新生目标先验信息的复杂运动场景具有较强的多目标跟踪鲁棒性,且跟踪精度以及时间耗费均优于传统广义标签多伯努利滤波器。 展开更多
关键词 多目标跟踪 随机有限集 δ广义标签多伯努利 自适应目标新生
在线阅读 下载PDF
基于δ-广义标签多贝努利的群分裂算法 被引量:1
4
作者 马艳琴 甘林海 王刚 《现代雷达》 CSCD 北大核心 2018年第12期46-51,共6页
群分裂是群目标的重要运动形式,基本的广义标签多贝努利(GLMB)滤波器计算复杂,且只对存活和新生目标建模,不能有效描述群分裂运动。针对此问题,在δ-GLMB滤波算法的基础上建立群分裂模型,通过最小化Kullback-Leibler散度(KL-DIV)的方法... 群分裂是群目标的重要运动形式,基本的广义标签多贝努利(GLMB)滤波器计算复杂,且只对存活和新生目标建模,不能有效描述群分裂运动。针对此问题,在δ-GLMB滤波算法的基础上建立群分裂模型,通过最小化Kullback-Leibler散度(KL-DIV)的方法近似目标真实密度分布,推导了一种考虑群分裂的GGIW-δ-GLMB滤波算法。仿真实验表明,该算法能够较好地跟踪群分裂运动。 展开更多
关键词 群目标 分裂 δ-广义标签多贝努利算法 Kullback—Leibler散度 伽马高斯逆威夏特
在线阅读 下载PDF
箱粒子广义标签多伯努利滤波的目标跟踪算法 被引量:9
5
作者 苗雨 宋骊平 姬红兵 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第10期107-112,共6页
针对序列蒙特卡罗广义标签多伯努利滤波(SMC-GLMB)算法计算效率低、实时性差的问题,提出了箱粒子广义标签多伯努利滤波的目标跟踪(Box-GLMB)算法。该算法使用带标签的随机有限集描述多目标的状态,包括目标的位置和速度,并且对每个目标... 针对序列蒙特卡罗广义标签多伯努利滤波(SMC-GLMB)算法计算效率低、实时性差的问题,提出了箱粒子广义标签多伯努利滤波的目标跟踪(Box-GLMB)算法。该算法使用带标签的随机有限集描述多目标的状态,包括目标的位置和速度,并且对每个目标用互不相同的标签进行区分;然后利用箱粒子滤波算法近似单目标状态的概率密度,即用一组带权值的均匀分布拟合单目标状态概率密度;最后通过广义标签多伯努利滤波对多目标状态的概率密度进行预测与更新,从多目标状态后验概率密度中估计单目标的位置与速度,根据目标的标签可以实现航迹跟踪。BoxGLMB算法结合了箱粒子滤波与GLMB算法的优势,能够跟踪目标航迹,同时提高计算效率。仿真结果表明,Box-GLMB算法可以有效估计目标状态以及跟踪目标航迹,相比于SMC-GLMB算法,计算效率提升了62%。 展开更多
关键词 目标跟踪 随机有限集 广义标签多伯努利滤波 箱粒子滤波
在线阅读 下载PDF
δ-广义标记多伯努利滤波器的非线性应用扩展 被引量:3
6
作者 侯利明 连峰 王伟 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第6期109-116,共8页
针对非线性模型下δ-广义标记多伯努利(δ-GLMB)滤波器的序贯蒙特卡洛(SMC)实现过程计算复杂度过高、难以实现快速准确滤波的问题,给出了δ-GLMB滤波器的积分卡尔曼高斯混合(QK-GM)实现过程。该算法基于Gauss-Hermite数值积分规则获取... 针对非线性模型下δ-广义标记多伯努利(δ-GLMB)滤波器的序贯蒙特卡洛(SMC)实现过程计算复杂度过高、难以实现快速准确滤波的问题,给出了δ-GLMB滤波器的积分卡尔曼高斯混合(QK-GM)实现过程。该算法基于Gauss-Hermite数值积分规则获取一组带权重的积分点,利用这些积分点求取多目标密度函数的均值和协方差矩阵。将该算法与已有的扩展卡尔曼高斯混合(EK-GM)实现、无味卡尔曼高斯混合(UK-GM)实现和SMC实现在不同的杂波强度和检测概率条件下就多目标跟踪精度和时间消耗等方面做了较为详细的对比,结果表明,与SMC实现方法相比,QK-GM-δ-GLMB算法能以完全可接受的时间开销为代价,将多目标跟踪精度提高10%以上。该算法为δ-GLMB滤波器在非线性场景中的应用提供了一种新的实现方法。 展开更多
关键词 δ-广义标记多伯努利 积分卡尔曼 高斯混合 多目标跟踪
在线阅读 下载PDF
基于广义标签多伯努利滤波的可分辨群目标跟踪算法 被引量:9
7
作者 朱书军 刘伟峰 崔海龙 《自动化学报》 EI CSCD 北大核心 2017年第12期2178-2189,共12页
针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估... 针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估计.本文工作主要包括:1)结合图论中的邻接矩阵对可分辨群目标运动进行动态建模.2)利用基于L-RFS的广义标签多伯努利滤波(Generalizes label multi-Bernoulli,GLMB)算法对目标的状态和个数进行估计,并且通过估计邻接矩阵得到群的结构和个数估计.3)通过个数不同、结构不同的三个子群目标在二维平面分别做线性和非线性运动进行算法验证.仿真分析表明本文算法能够准确估计出群目标中各目标的状态、个数以及子群的个数,并且能获得目标的航迹估计. 展开更多
关键词 可分辨群目标跟踪 广义标签多伯努利滤波 邻接矩阵 随机有限集 图论
在线阅读 下载PDF
闪烁噪声统计特性未知情况下的鲁棒广义标签多伯努利滤波器 被引量:3
8
作者 侯利明 连峰 +1 位作者 谭顺成 徐从安 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1346-1353,共8页
为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽... 为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽了闪烁噪声均值为零的限制性假设,可以自适应地处理闪烁噪声均值未知且时变条件下的多目标跟踪问题.本文在GLMB滤波框架下,利用变分贝叶斯方法对增广状态中的参数进行变分迭代,并通过最小化Kullback⁃Leibler散度得到边缘似然函数的近似解.仿真结果表明,在闪烁噪声统计特性未知的情况下,所提滤波器能有效地对多目标进行跟踪. 展开更多
关键词 随机有限集 多目标跟踪 闪烁噪声 统计特性未知 变分贝叶斯推断 广义标签多伯努利滤波器
在线阅读 下载PDF
多模型广义标签多伯努利滤波器 被引量:3
9
作者 辛怀声 宋鹏汉 曹晨 《系统工程与电子技术》 EI CSCD 北大核心 2022年第12期3603-3613,共11页
标准广义标签多伯努利算法没有对目标状态转移密度进行深入分析,在带入确定运动模型的情况下无法对机动目标进行跟踪。针对这个问题,参考基于马尔可夫跳变分支合并策略的多模型算法,提出了交互多模型广义标签多伯努利算法、一阶广义伪... 标准广义标签多伯努利算法没有对目标状态转移密度进行深入分析,在带入确定运动模型的情况下无法对机动目标进行跟踪。针对这个问题,参考基于马尔可夫跳变分支合并策略的多模型算法,提出了交互多模型广义标签多伯努利算法、一阶广义伪贝叶斯广义标签多伯努利算法,以及二阶广义伪贝叶斯广义标签多伯努利算法,并将这三种多模型算法与同样针对机动多目标的马尔可夫跳变系统广义标签多伯努利算法进行比较。仿真结果表明,与马尔可夫跳变系统广义标签多伯努利算法相比,所提三种算法具有更低的计算时间消耗和更高的跟踪精度。其中,一阶广义伪贝叶斯广义标签多伯努利算法计算时间消耗最低,二阶广义伪贝叶斯广义标签多伯努利算法跟踪精度最高,交互多模型广义标签多伯努利算法综合性能最好。 展开更多
关键词 广义标签多伯努利 多模型 广义伪贝叶斯 马尔可夫跳变 目标跟踪
在线阅读 下载PDF
基于未知探测概率的RAG-GLMB多目标跟踪算法
10
作者 邓宇浩 李琳 《中国惯性技术学报》 CSCD 北大核心 2024年第12期1191-1196,共6页
针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标... 针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标存活问题;并设计比例因子提高实际探测概率较低时自适应门限方法鲁棒性。仿真结果表明,未知探测概率下,所提算法目标数估计正确率较传统GLMB算法高20.5%,最优子模式分配(OSPA)距离少7 m,且在量测数据部分丢失和强杂波背景下具有较好的鲁棒性。 展开更多
关键词 多目标跟踪 广义标签多伯努利滤波器 自适应门限 未知探测概率
在线阅读 下载PDF
基于均方根容积卡尔曼的δ-GLMB多目标跟踪算法 被引量:3
11
作者 母晓慧 杨风暴 +2 位作者 刘哲 陶晓伟 张雅玲 《计算机应用与软件》 北大核心 2020年第4期164-170,共7页
在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(S... 在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(Square-rooted Cubature Kalman Filter,SCKF)的δ-GLMB高斯混合实现算法。基于三阶球面-径向容积准则选取一组等权的容积点集,对GM-δ-GLMB滤波器的伯努利分量传递过程中的高斯参量进行预测及更新,实现非线性模型系统下的目标跟踪。仿真结果表明,与现有的δ-GLMB滤波器的扩展卡尔曼滤波(Extended Kalman Filter,EKF)高斯混合实现及无迹卡尔曼滤波(Unscented Kalman Filter,UKF)高斯混合实现相比,该算法可提高非线性高杂波密度环境下的目标跟踪精度。 展开更多
关键词 非线性系统 均方根容积卡尔曼 δ-广义标签多伯努利 高斯混合 多目标跟踪
在线阅读 下载PDF
反复发作抑郁症与5-羟色胺1A和5-羟色胺2A受体基因多态性的关联性研究 被引量:16
12
作者 姚静 庞剑月 +3 位作者 何瑾 冯婷婷 张淑绮 李恒芬 《中国神经精神疾病杂志》 CAS CSCD 北大核心 2020年第1期13-18,共6页
目的探讨反复发作抑郁症(recurrent major depressive disorder,RMDD)与5-羟色胺1A受体(5-hydroxytryptamine 1A receptor,5-HTR1A)和5-羟色胺2A受体(5-hydroxytryptamine 2A receptor,5-HTR2A)基因单核苷酸多态性(single nucleotide po... 目的探讨反复发作抑郁症(recurrent major depressive disorder,RMDD)与5-羟色胺1A受体(5-hydroxytryptamine 1A receptor,5-HTR1A)和5-羟色胺2A受体(5-hydroxytryptamine 2A receptor,5-HTR2A)基因单核苷酸多态性(single nucleotide polymorphisms,SNPs)的关系。方法选取5-HTR1A(rs878567)和5-HTR2A(rs1328683、rs17068986、rs9534495)基因的4个标签SNPs(tagging SNPs,tagSNPs),使用Sequenom质谱分析对1030例RMDD患者(病例组)和851名健康对照(对照组)的DNA样本进行基因分型检测,采用关联分析和广义多因子降维法(generalized multifactor dimensionality reduction,GMDR)分析RMDD与4个tagSNPs的关系。结果5-HTR2A rs17068986基因型(=8.727,P=0.013)及等位基因(=4.955,P=0.025)频率在两组间分布差异均具有统计学意义;病例组T等位基因频率高于对照组(55.3%vs.51.6%,OR=1.158,95%CI:1.018~1.318)。5-HTR2A rs17068986基因型分布最符合显性遗传模型(P=0.003),病例组TT+TC基因型频率高于对照组(81.0%vs.75.4%,OR=1.410,95豫CI:1.120~1.760)。GMDR分析显示四阶交互模型(rs878567、rs1328683、rs17068986、rs9534495)为最优模型(P=0.001,1000次置换检验),交叉验证一致性为10/10,检验精确度为0.534。结论5-HTR2A rs17068986可能存在或连锁RMDD的易感位点,5-HTR1A和5-HTR2A基因的交互作用也与RMDD的发病有一定关系。 展开更多
关键词 反复发作抑郁症 5-羟色胺受体 标签 SNPS 广义多因子降维法
在线阅读 下载PDF
基于VB近似的自适应δ-GLMB滤波算法 被引量:4
13
作者 袁常顺 王俊 +1 位作者 向洪 孙进平 《系统工程与电子技术》 EI CSCD 北大核心 2017年第2期237-243,共7页
目前,基于δ-扩展标签多伯努利(δ-generalized labeled multi-Bernoulli,δ-GLMB)滤波器的多目标跟踪方法假设量测噪声协方差先验已知,而实际中量测噪声协方差可能是未知或随着环境改变而变化。针对上述问题,提出一种基于变分贝叶斯(va... 目前,基于δ-扩展标签多伯努利(δ-generalized labeled multi-Bernoulli,δ-GLMB)滤波器的多目标跟踪方法假设量测噪声协方差先验已知,而实际中量测噪声协方差可能是未知或随着环境改变而变化。针对上述问题,提出一种基于变分贝叶斯(variational Bayesian,VB)近似的自适应δ-GLMB滤波算法。该算法以δ-GLMB滤波器为基础,利用逆威沙特和高斯乘积混合分布近似量测噪声协方差和多目标状态联合后验分布,通过VB近似技术推导滤波迭代。仿真结果表明,所提算法对于线性未知量测噪声协方差场景具有很强的多目标跟踪鲁棒性,在有效估计量测噪声协方差的同时实现准确的目标数和目标状态估计。 展开更多
关键词 多目标跟踪 未知量测噪声协方差 随机有限集 变分贝叶斯近似 δ-扩展标签多伯努利滤波
在线阅读 下载PDF
非线性量测下的机动多目标跟踪
14
作者 国强 任海宁 +1 位作者 周凯 戚连刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第5期64-73,共10页
为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过... 为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过去相关无偏量测转换实现位置量测从极坐标系到笛卡尔坐标系的无偏转换,并通过预测值去除量测误差和其协方差的相关性造成的滤波估计偏差,实现了非线性场景下的机动多目标跟踪;然后,通过航迹和量测的关联新息以及目标的机动约束构建联合波门,降低了杂波量测的数量;最后引入改进的模糊算法,以目标的模型后验概率为输入,根据模型的分离程度自适应调节运动模型的过程噪声,增加滤波精度。研究结果表明:在杂波环境下,通过与CKF-JMS-δ-GLMB、CKF-IMM-δ-GLMB等非线性多模型滤波器对比,所提算法计算时间较小,且跟踪精度更高,鲁棒性强。所提算法避免了传统的非线性处理方式计算量较大的问题,并且具有较好的杂波抑制特性,提升了非线性量测下机动多目标跟踪的性能。 展开更多
关键词 非线性量测 机动多目标 δ-广义标签多伯努利滤波器 量测转换 交互多模型 模糊算法
在线阅读 下载PDF
基于δ-GLMB自适应门限判定的多量测目标跟踪算法 被引量:1
15
作者 王彦平 王端阳 +2 位作者 李洋 林赟 邱叶林 《信号处理》 CSCD 北大核心 2021年第4期518-527,共10页
针对实际复杂交通场景中毫米波雷达能从单目标上获得多个量测导致广义标签多伯努利(δ-Generalized labelled multi-Bernoulli,δ-GLMB)滤波算法的多目标跟踪结果中出现单目标有多条轨迹等问题,提出了一种在δ-GLMB跟踪结果的基础上加... 针对实际复杂交通场景中毫米波雷达能从单目标上获得多个量测导致广义标签多伯努利(δ-Generalized labelled multi-Bernoulli,δ-GLMB)滤波算法的多目标跟踪结果中出现单目标有多条轨迹等问题,提出了一种在δ-GLMB跟踪结果的基础上加入自适应门限判定的改进算法。首先,通过δ-GLMB滤波器对场景中目标进行跟踪,然后通过自适应门限判定方法实现目标多余轨迹点的删除和属于同目标的轨迹的标签统一。本文使用77 GHz毫米波雷达对实际交通场景的监测数据进行了实验,结果表明本文提出的方法在目标个数估计准确率上有显著提高,对实际交通数据的鲁棒性更好。 展开更多
关键词 多目标跟踪 广义标签多伯努利滤波 多量测 自适应门限判定
在线阅读 下载PDF
低空监视雷达“走-停-走”目标跟踪技术 被引量:2
16
作者 徐开明 王佰录 +2 位作者 李溯琪 邓云凯 王经鹤 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第3期443-458,共16页
以旋翼无人机为代表的低空小目标常采用低速“走-停”策略或利用障碍物遮挡,躲避雷达追踪,对重要信息装备和战略要地进行点穴式打击或干扰。这类目标可多次消失-重返于雷达视域,称之“走-停-走”目标。若采用传统目标跟踪模型和算法处... 以旋翼无人机为代表的低空小目标常采用低速“走-停”策略或利用障碍物遮挡,躲避雷达追踪,对重要信息装备和战略要地进行点穴式打击或干扰。这类目标可多次消失-重返于雷达视域,称之“走-停-走”目标。若采用传统目标跟踪模型和算法处理这类目标,易导致目标身份不连续、航迹碎片化。该文在随机集理论框架下,基于标签多伯努利(LMB)滤波器,研究低空监视雷达“走-停-走”目标连续跟踪问题。为描述“走-停-走”目标多次往返于雷达视域的演化特性,首次引入第3类出生目标模型,即重生(RB)过程模型。首先,利用目标重返雷达视域前-后目标状态的空间位置和动力学参数关系,提出一种基于空域相关(SC)的RB过程;然后,基于SC-RB过程,在贝叶斯滤波框架下,设计了SC-RB-LMB滤波器算法,可实现多“走-停-走”目标连续稳健跟踪,维持航迹标签的连续性;最后,在典型低空监视场景下,通过仿真和实测数据验证了提出模型和算法的有效性和性能优势。 展开更多
关键词 低空监视雷达 “走--走”目标跟踪 随机集理论 重生过程模型 标签多伯努利滤波器
在线阅读 下载PDF
一种状态扩维标签匹配的分布式融合算法 被引量:1
17
作者 陈旭志 杨金龙 《信号处理》 CSCD 北大核心 2022年第7期1467-1480,共14页
在分布式多传感器网络中,针对标签多伯努利(Labeled Multi-Bernoulli,LMB)后验分布进行广义协方差交集(Generalized Covariance Intersection,GCI)融合时,存在标签不一致、计算复杂度高、以及目标漏跟使得GCI融合后势低估问题,提出一种... 在分布式多传感器网络中,针对标签多伯努利(Labeled Multi-Bernoulli,LMB)后验分布进行广义协方差交集(Generalized Covariance Intersection,GCI)融合时,存在标签不一致、计算复杂度高、以及目标漏跟使得GCI融合后势低估问题,提出一种状态扩维标签匹配的分布式传感器融合算法。首先,针对标签不一致问题,对目标状态进行扩维,改进分布式融合中的目标标签的匹配过程,使融合过程更加高效,同时也克服标签空间不一致的问题;针对计算复杂度高的问题,只传输“疑似目标”后验分布,减少通信数据量,采用“分而治之”的策略对已匹配的存活目标、新生目标、漏跟目标等分别进行融合,结合前述改进目标标签匹配过程有效降低了计算复杂度;针对目标漏跟使得GCI融合后势低估问题,建立漏跟与虚警表记录相应目标,对漏跟目标分布采用反馈补偿策略,有效降低单一传感器目标漏跟对传感器网络GCI融合后跟踪精度的影响。实验结果证明了提出融合方法的有效性和鲁棒性。 展开更多
关键词 分布式多传感器 多目标跟踪 标签多伯努利 广义协方差交集
在线阅读 下载PDF
基于联合GLMB滤波器的可分辨群目标跟踪 被引量:2
18
作者 齐美彬 庄硕 +2 位作者 胡晶晶 杨艳芳 胡元奎 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1212-1219,共8页
针对联合广义标签多伯努利(joint generalized labeled multi-Bernoulli, J-GLMB)滤波算法中群目标之间距离较近、容易关联错误的问题,结合超图匹配(hypergraph matching, HGM)提出一种基于HGM-J-GLMB滤波器的可分辨群目标跟踪算法。首... 针对联合广义标签多伯努利(joint generalized labeled multi-Bernoulli, J-GLMB)滤波算法中群目标之间距离较近、容易关联错误的问题,结合超图匹配(hypergraph matching, HGM)提出一种基于HGM-J-GLMB滤波器的可分辨群目标跟踪算法。首先,采用J-GLMB滤波器估计群内各目标的状态、数目及轨迹信息,并利用HGM结果提升量测与预测状态之间的关联性能。其次,通过图理论计算邻接矩阵,获取群结构信息和子群数目。随后,利用群结构信息估计协作噪声,进而校正目标的预测状态。最后,通过平滑算法改善滤波效果,并设置轨迹长度阈值,使其在平滑状态达到消除短轨迹的目的。仿真实验表明,所提算法在线性系统下能有效提升群目标跟踪性能。 展开更多
关键词 多目标跟踪 联合广义标签多伯努利滤波 可分辨群目标 超图匹配
在线阅读 下载PDF
基于GLMB滤波的复杂场景下红外弱小目标自适应跟踪算法
19
作者 蔡如华 周健斌 +1 位作者 吴孙勇 郑翔飞 《红外技术》 CSCD 北大核心 2024年第7期743-753,共11页
针对红外弱小目标在复杂场景下受到漏检和杂波影响,导致跟踪不连续甚至失效的问题,本文提出一种红外弱小目标自适应跟踪算法。在预处理阶段,为了减少不必要的计算,首先定义一种衡量图像复杂度的算法。然后该算法通过计算红外图像多个特... 针对红外弱小目标在复杂场景下受到漏检和杂波影响,导致跟踪不连续甚至失效的问题,本文提出一种红外弱小目标自适应跟踪算法。在预处理阶段,为了减少不必要的计算,首先定义一种衡量图像复杂度的算法。然后该算法通过计算红外图像多个特征得到场景复杂度来确认场景类型,再根据场景类型选取对应的检测算法提取目标候选位置、灰度以及局部直方图等特征建立对应的量测模型与似然函数。在目标跟踪阶段,为了自适应地匹配广义标签多伯努利(Generalized Labeled Multi-Bernoulli,GLMB)滤波器的滤波参数,在GLMB的基础上提出一种适应视频图像的新生算法进行航迹起始;针对红外图像序列目标检测概率未知的情况,将未知检测概率的基数化概率假设密度(Cardinality Probability Hypothesis Density,CPHD)滤波器集成到GLMB中实时估计目标检测概率以提升跟踪精度。仿真结果表明,所提出算法能有效地排除量测漏检和虚警的干扰,跟踪不同红外复杂场景下的弱小目标。 展开更多
关键词 红外弱小目标 广义标签多伯努利滤波 自适应跟踪 复杂场景
在线阅读 下载PDF
一步数据关联GLMB扩展目标跟踪算法 被引量:6
20
作者 李翠芸 李洋 +1 位作者 姬红兵 石仁政 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第5期137-143,共7页
针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签... 针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签多伯努利滤波器相结合,实现在量测难以划分情况下的多扩展目标跟踪。仿真实验表明,该算法能够在交叉、近邻场景中实现对目标的有效跟踪,并且在估计精度方面优于传统的基于量测划分的扩展目标跟踪算法。 展开更多
关键词 扩展目标跟踪 乘性噪声模型 二阶扩展卡尔曼滤波算法 数据关联 广义标签多伯努利滤波器
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部