Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ...Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.展开更多
A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in...A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.展开更多
Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperatur...Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperature on Mn and Si atoms. A fast oxidation of Si atoms occurs followed by oxidation of Mn atoms at RT. The MnO<sub>2</sub> was reduced by Si atoms and the SiO was oxidized further to SiO<sub>2</sub> during the sample heating.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the micro...Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the microstructure,stability at1100°C and stress rupture properties at 1070°C and 160 MPa of the single crystal superalloy were investigated.The experiment results show that the primary dendrite arm spacing decreases and the volume fraction ofγ/γ′eutectic of the alloy increases with the increase of Nb content in the as-cast microstructures.The size ofγ′phase particles becomes small and uniform and the cubic shape does not obviously change with the increase of Nb content.The precipitating rate and volume fraction of TCP phases increase significantly with the increase of Nb content in the process of long term aging at 1100°C.The stress rupture lives increase and elongation decreases with increasing Nb content at 1070°C/160 MPa.At last,the relationship between the microstructures stability,stress rupture properties of the alloy and Nb content is discussed based on JMat Pro software and the lastest relevant database for single crystal superalloy.展开更多
C_(60) and C_(70) single crystals free from solvent contamination grew from their vapour. Large C_(60) crystals up to a size of about 5 mm × 3 mm × 3 mm and C_(70) crystals about 1 mm × 1 mm × ...C_(60) and C_(70) single crystals free from solvent contamination grew from their vapour. Large C_(60) crystals up to a size of about 5 mm × 3 mm × 3 mm and C_(70) crystals about 1 mm × 1 mm × 1 mm were obtained. C_(60) crystals with fee structure showed two types of morphological faces, namely {111} and {100 },frequently with twinning on {111} face. C_(70) crystals obtained have a hop structure with a = 10. 1 andc=16. 7 DSC and X-ray diffraction analysis indicated that C(70) crystal underwent phase transition below 100 ℃ Morphological observation suggests that the growth of C(60) and C(70) single crystals is based on layer spreading mechanism.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whol...The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.展开更多
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金Supported by the National Key Research and Development Program of China(2021YFB2012601)National Natural Science Foundation of China(12204109)+1 种基金Science and Technology Innovation Plan of Shanghai Science and Technology Commission(21JC1400200)Higher Education Indus⁃try Support Program of Gansu Province(2022CYZC-06)。
文摘Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.
文摘A tetranuclear Ln(Ⅲ)-based complex:[Dy_(4)(dbm)_(4)(L)_(6)(μ_(3)-OH)_(2)]·CH_(3)CN(1)(HL=5-[(4-methylbenzylidene)amino]quinolin-8-ol,Hdbm=dibenzoylmethane)was manufactured and its structure was characterized in detail.Xray diffraction analysis shows that complex 1 belongs to the monoclinic crystal system and its space group is P2_1/n,which contains a rhombic Dy_(4)core.Magnetic measurements of 1 suggest it possesses extraordinary single-molecule magnet(SMM)behavior.Its energy barrier U_(eff)/k_(B)was 116.7 K,and the pre-exponential coefficient τ_(0)=1.05×10~(-8)s.CCDC:2359322.
文摘Kinetics of oxygen adsorption on single crystal Mn<sub>5</sub>Si<sub>3</sub> (111) surface and initial surface oxidation were investigated. Oxygen chemisorbs dissociatively at room temperature on Mn and Si atoms. A fast oxidation of Si atoms occurs followed by oxidation of Mn atoms at RT. The MnO<sub>2</sub> was reduced by Si atoms and the SiO was oxidized further to SiO<sub>2</sub> during the sample heating.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
文摘Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the microstructure,stability at1100°C and stress rupture properties at 1070°C and 160 MPa of the single crystal superalloy were investigated.The experiment results show that the primary dendrite arm spacing decreases and the volume fraction ofγ/γ′eutectic of the alloy increases with the increase of Nb content in the as-cast microstructures.The size ofγ′phase particles becomes small and uniform and the cubic shape does not obviously change with the increase of Nb content.The precipitating rate and volume fraction of TCP phases increase significantly with the increase of Nb content in the process of long term aging at 1100°C.The stress rupture lives increase and elongation decreases with increasing Nb content at 1070°C/160 MPa.At last,the relationship between the microstructures stability,stress rupture properties of the alloy and Nb content is discussed based on JMat Pro software and the lastest relevant database for single crystal superalloy.
文摘C_(60) and C_(70) single crystals free from solvent contamination grew from their vapour. Large C_(60) crystals up to a size of about 5 mm × 3 mm × 3 mm and C_(70) crystals about 1 mm × 1 mm × 1 mm were obtained. C_(60) crystals with fee structure showed two types of morphological faces, namely {111} and {100 },frequently with twinning on {111} face. C_(70) crystals obtained have a hop structure with a = 10. 1 andc=16. 7 DSC and X-ray diffraction analysis indicated that C(70) crystal underwent phase transition below 100 ℃ Morphological observation suggests that the growth of C(60) and C(70) single crystals is based on layer spreading mechanism.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
文摘The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.