期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Utilizing BP neural networks to accurately reconstruct the tritium depth profile in materials for BIXS
1
作者 Chen Zhao Wei Jin +2 位作者 Yan Shi Chang-An Chen Yi-Ying Zhao 《Nuclear Science and Techniques》 2025年第1期103-114,共12页
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem... β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection. 展开更多
关键词 β-ray-induced X-ray spectroscopy Tritium detection BP network Ridge regression Reconstruction problem
在线阅读 下载PDF
A Newly Developed Non-Destructive Tritium Measurement Technique and Its Application to V-4Cr-4Ti Alloy
2
作者 刘翔 陈学 +2 位作者 H.HOMMA Y.HATANO M.MATSUYAMA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第6期741-744,共4页
A non-destructive and in-situ technique for the measurement of tritium in materials, namely β-ray-induced X-ray spectrometry (BIXS), has been developed recently. In the present study a V-4Cr-4Ti alloy was pre-heate... A non-destructive and in-situ technique for the measurement of tritium in materials, namely β-ray-induced X-ray spectrometry (BIXS), has been developed recently. In the present study a V-4Cr-4Ti alloy was pre-heated at 1000℃ for 2 h to form a recrystallization structure before the tritium absorption experiments were conducted. Firstly the hydrogen isotope gas was charazterized by means of a quadrupole mass spectrometer (QMS) and a small-sized ionization chamber. Then hydrogen isotope absorption tests of V-4Cr-4Ti alloy were performed at 400 ℃ and the atomic concentration of hydrogen isotope in V-4Cr-4Ti alloy was estimated as 0.17% with a tritium content of approximately 2.5 ppm. Experimental results indicate that BIXS is a quite useful tool for quantitatively measuring the tritium content and tritium distribution in the surface layers of vanadium alloys and no strong trapping effects of tritium exist in the pre-heated V-4Cr-4Ti alloy. 展开更多
关键词 tritium V-4Cr-4Ti β-ray-induced X-ray spectrometry tritium measurements
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部