The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investiga...The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investigated by adding 1.92 g.m^-2 ^15N tracer in throughfall for two successive growing seasons at a greenhouse experiment. Ammonium and nitrate depositions were simulated on four treatments (cultured and non-cultured) and each treatment was labeled with either ^15N-NH4^+ or ^15N-NO3^-. Total recovery rates of the applied ^15N in the whole system accounted for 74.9% to 67.3% after ^15N-NH4^+ and 85.3% to 88.1% after ^15N-NO3^-in cultured and non-cultured treatments, respectively. The main sink for both ^15N tracers was the forest soil (including forest floor), where 34.6% to 33.7% of ^15N-NH4^+ and 13.1% to 9.0% of ^15N-NO3^-were found in cultured and non-cultured treatments, respectively, suggesting strong immobilization of both N forms by hetero- trophic microorganisms. Nitrogen immobilization by microorganisms in the forest soil (including forest floor) was three times higher when ^15N-NH4^+ was applied compared to ^15N-NO3^-. The preferential heterotrophic use of ammonium resulted in a two times higher retention of deposited ^15N-NH4^+ in the forest soil as compared to plants. In contrast, nitrate immobilization in the forest soil was lower compared to plants, although statistically it was not significantly different. In total the immobilization of ammonium in the plant-soil system was about 60% higher than nitrate, indicating the importance of the N-forms deposition for retention in forest ecosystems.展开更多
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w...Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.展开更多
基金supported by ibw, Goet-tingen University, Germany
文摘The partitioning of nitrogen deposition among forest soil (including forest floor), leachate and above- and belowground biomass of pot cultured beech seedlings in comparison to non-cultured treatments were investigated by adding 1.92 g.m^-2 ^15N tracer in throughfall for two successive growing seasons at a greenhouse experiment. Ammonium and nitrate depositions were simulated on four treatments (cultured and non-cultured) and each treatment was labeled with either ^15N-NH4^+ or ^15N-NO3^-. Total recovery rates of the applied ^15N in the whole system accounted for 74.9% to 67.3% after ^15N-NH4^+ and 85.3% to 88.1% after ^15N-NO3^-in cultured and non-cultured treatments, respectively. The main sink for both ^15N tracers was the forest soil (including forest floor), where 34.6% to 33.7% of ^15N-NH4^+ and 13.1% to 9.0% of ^15N-NO3^-were found in cultured and non-cultured treatments, respectively, suggesting strong immobilization of both N forms by hetero- trophic microorganisms. Nitrogen immobilization by microorganisms in the forest soil (including forest floor) was three times higher when ^15N-NH4^+ was applied compared to ^15N-NO3^-. The preferential heterotrophic use of ammonium resulted in a two times higher retention of deposited ^15N-NH4^+ in the forest soil as compared to plants. In contrast, nitrate immobilization in the forest soil was lower compared to plants, although statistically it was not significantly different. In total the immobilization of ammonium in the plant-soil system was about 60% higher than nitrate, indicating the importance of the N-forms deposition for retention in forest ecosystems.
基金supported by Grants from the ‘‘973’’ Project(2014CB953803)the Fundamental Research Funds for the Central Universities(2572017EA02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,164320H116)
文摘Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.