环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三...环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.展开更多
通过还原法制备了Cu_(2)O/还原氧化石墨烯(Cu_(2)O/rGO)复合材料,采用SEM、FTIR、EDS、XRD、XPS、氮气吸附-脱附、循环伏安曲线对其结构和氧还原性能进行了表征和测试。将Cu_(2)O/rGO复合材料负载于碳布制得了Cu_(2)O/rGO阴极,以硝酸盐...通过还原法制备了Cu_(2)O/还原氧化石墨烯(Cu_(2)O/rGO)复合材料,采用SEM、FTIR、EDS、XRD、XPS、氮气吸附-脱附、循环伏安曲线对其结构和氧还原性能进行了表征和测试。将Cu_(2)O/rGO复合材料负载于碳布制得了Cu_(2)O/rGO阴极,以硝酸盐作为模型污染物,将其作为微生物燃料电池(MFC)的阴极,探究其对MFC产电脱氮性能和微生物菌落结构的影响。结果表明,Cu_(2)O/rGO复合材料具有大量的介孔结构和良好的氧还原可逆性。与Pt/C阴极相比,Cu_(2)O/rGO阴极的交换电流密度升高了47.77%,电荷转移阻抗降低了65.53%。Cu_(2)O/rGO-MFC在处理NO_(3)^(–)-N废水时平均最大输出电压为662.54 m V、最大功率密度为26.27 m W/cm^(2)、平均库仑效率为32.02%、NO_(3)^(–)-N去除速率为83.33 mg/(L·h),均高于Pt/C-MFC[485.33 m V、16.98 m W/cm^(2)、7.38%、41.67 mg/(L·h)]。Cu_(2)O/rGO-MFC阴极生物膜中反硝化关键酶活性和胞外聚合物含量增加,同时,功能性微生物Betaproteobacteria和Alphaproteobacteria纲的丰度分别较Pt/C-MFC增加了35.66%和36.96%。展开更多
文摘环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.
文摘通过还原法制备了Cu_(2)O/还原氧化石墨烯(Cu_(2)O/rGO)复合材料,采用SEM、FTIR、EDS、XRD、XPS、氮气吸附-脱附、循环伏安曲线对其结构和氧还原性能进行了表征和测试。将Cu_(2)O/rGO复合材料负载于碳布制得了Cu_(2)O/rGO阴极,以硝酸盐作为模型污染物,将其作为微生物燃料电池(MFC)的阴极,探究其对MFC产电脱氮性能和微生物菌落结构的影响。结果表明,Cu_(2)O/rGO复合材料具有大量的介孔结构和良好的氧还原可逆性。与Pt/C阴极相比,Cu_(2)O/rGO阴极的交换电流密度升高了47.77%,电荷转移阻抗降低了65.53%。Cu_(2)O/rGO-MFC在处理NO_(3)^(–)-N废水时平均最大输出电压为662.54 m V、最大功率密度为26.27 m W/cm^(2)、平均库仑效率为32.02%、NO_(3)^(–)-N去除速率为83.33 mg/(L·h),均高于Pt/C-MFC[485.33 m V、16.98 m W/cm^(2)、7.38%、41.67 mg/(L·h)]。Cu_(2)O/rGO-MFC阴极生物膜中反硝化关键酶活性和胞外聚合物含量增加,同时,功能性微生物Betaproteobacteria和Alphaproteobacteria纲的丰度分别较Pt/C-MFC增加了35.66%和36.96%。