The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano...The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.展开更多
The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone t...The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.展开更多
Determining the timing, magnitude, and location of deformation due to the Indo\|Asian collision is widely acknowledged as an important step in understanding how the lithosphere responds during continental collision. T...Determining the timing, magnitude, and location of deformation due to the Indo\|Asian collision is widely acknowledged as an important step in understanding how the lithosphere responds during continental collision. Thus a puzzling result of geological investigations of the Lhasa Block over the past two decades has been the apparent lack of significant Tertiary deformation there. Perhaps the most important structural feature of the Lhasa Block is the south\|directed Gangdese Thrust System, which developed along its southern edge. The thrust system, which separates the Andean\|type batholith of southern Asia from rocks of Indian affinity, is obscured at most locations across southeastern Tibet by backthrusts of the younger, north\|directed Renbu Zedong Thrust System. The best documented site where both thrusts are exposed is a structural window near Zedong.展开更多
The Siwalik Belt is a frontal fold\|thrust belt of the Himalayas and composed of thick sequence of foreland basin sediments derived from the Himalayas during the last 15 to 17 million years.From this Miocene belt in t...The Siwalik Belt is a frontal fold\|thrust belt of the Himalayas and composed of thick sequence of foreland basin sediments derived from the Himalayas during the last 15 to 17 million years.From this Miocene belt in the central Nepal,we discovered exotic thrust packages of the Middle Proterozoic rocks,which has been regarded as the Siwalik Group or post\|collisional sediments correlatable with the Subathu or Murree Formation in India.The thrust belt,called the Bagmati Belt,is narrowly distributed in the Siwalik Belt,22km to the north of the Main Frontal Thrust (MFT or HFF) that is an active fault and considered to be the deformation front of the Himalayan orogen.The Main Boundary Thrust (MBT) which separates the Siwalik Belt from the Lesser Himalayan Belt runs 7km to the north of the thrust packages.Within the belt,tectonic slices of 400m to 1km in thickness are repeated three to five times due to thrusts,sandwiching a thin slice of the Siwalik beds.The thrust package consists of the pre\|Siwalik sedimetary rocks and sills of dolerite,and named as the Bagmati Group.The thickness is only about 800m due to tectonic repition by thrust,although the group has been considered to be a continuous sequence attaining 2200m in thickness.We divided the Bagmati Group into three formations,each of which shows an upward\|coarsening and thickening sequence of 200 to 350m in thickness.All sequence is composed of red\|brown orthoquartzite,pink quartzite,micaceous shale and thin sandstone interbed and rhythmite,mottled hematite and hematitic pisolite.We interpret that the Bagmati Group was deposited in shallow lacustrine and desert environments.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. Thi...In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.展开更多
In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six de...In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.展开更多
The evolution of the Tarim southwest depression lying at the piedmont of the West Kunlun orogen differs completely from the evolution of the main part of Tarim basin after Later Palaeozoic because the former strongly ...The evolution of the Tarim southwest depression lying at the piedmont of the West Kunlun orogen differs completely from the evolution of the main part of Tarim basin after Later Palaeozoic because the former strongly subsides many times.. Subsidence is related closely to the West Kunlun fold thrust\|belt, thus the evolution of the Depression and the fold\|thrust\|belt reflects clearly the formation and evolution of the West Kunlun and even the Tibet.1 Evolution of the West Kunlun fold\|thrust\|belt\;Thrusting of the fold\|thrust\|belt can be classified into three stages:(1) Devonian thrusting:This is the oldest thrusting distinguished in the northern margin of the West Kunlun while the Silurian—Devonian thrusting was discriminated a few years ago by seismic data in the northern part of the East Kunlun. The Devonian thrusting is proved by the Upper Devonian dynamometamorphic rocks outcropping at the core of the anticline in the Sangzhu lying at the fold\|thrust\|belt. The rocks consist of slightly metamorphic clastic rock and have always been regarded as the Mid\|Proterozoic strata. But they are actually Upper Devonian strata according to the amount of perfect plant fossils that we found recently in the metamorphic rock, and they are overburdened `with an angular unconformity by another reliable Upper\|Devonian conglomerate in the core of the Aqike anticline. A possible explanation for this and its limited lined distribution parallel to the West Kunlun orogen is that they are subjected to metamorphism during the Later Devonian thrusting.展开更多
基金supported by the Western-Caucasus Research Center
文摘The main aim of this research is to get a better knowledge and understanding of the micro-scale oscillatory networks behavior in the solid propellants reactionary zones. Fundamental understanding of the micro-and nano-scale combustion mechanisms is essential to the development and further improvement of the next-generation technologies for extreme control of the solid propellant thrust. Both experiments and theory confirm that the micro-and nano-scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our concept,the micro-and nano-scale structures form both the fractal and self-organized wave patterns in the solid propellants reactionary zones. Control by the shape, the sizes and spacial orientation of the wave patterns allows manipulate by the energy exchange and release in the reactionary zones. A novel strategy for enhanced extreme thrust control in solid propulsion systems are based on manipulation by selforganization of the micro-and nano-scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic waves and electro-magnetic fields, generated by special kind of ring-shaped electric discharges along with resonance laser radiation. Application of special kind of the ring-shaped electric discharges demands the minimum expenses of energy and opens prospects for almost inertia-free control by combustion processes. Nano-sized additives will enhance self-organizing and self-synchronization of the micro-and nano-scale oscillatory networks on the nanometer scale. Suggested novel strategy opens the door for completely new ways for enhanced extreme thrust control of the solid propulsion systems.
文摘The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.
文摘Determining the timing, magnitude, and location of deformation due to the Indo\|Asian collision is widely acknowledged as an important step in understanding how the lithosphere responds during continental collision. Thus a puzzling result of geological investigations of the Lhasa Block over the past two decades has been the apparent lack of significant Tertiary deformation there. Perhaps the most important structural feature of the Lhasa Block is the south\|directed Gangdese Thrust System, which developed along its southern edge. The thrust system, which separates the Andean\|type batholith of southern Asia from rocks of Indian affinity, is obscured at most locations across southeastern Tibet by backthrusts of the younger, north\|directed Renbu Zedong Thrust System. The best documented site where both thrusts are exposed is a structural window near Zedong.
文摘The Siwalik Belt is a frontal fold\|thrust belt of the Himalayas and composed of thick sequence of foreland basin sediments derived from the Himalayas during the last 15 to 17 million years.From this Miocene belt in the central Nepal,we discovered exotic thrust packages of the Middle Proterozoic rocks,which has been regarded as the Siwalik Group or post\|collisional sediments correlatable with the Subathu or Murree Formation in India.The thrust belt,called the Bagmati Belt,is narrowly distributed in the Siwalik Belt,22km to the north of the Main Frontal Thrust (MFT or HFF) that is an active fault and considered to be the deformation front of the Himalayan orogen.The Main Boundary Thrust (MBT) which separates the Siwalik Belt from the Lesser Himalayan Belt runs 7km to the north of the thrust packages.Within the belt,tectonic slices of 400m to 1km in thickness are repeated three to five times due to thrusts,sandwiching a thin slice of the Siwalik beds.The thrust package consists of the pre\|Siwalik sedimetary rocks and sills of dolerite,and named as the Bagmati Group.The thickness is only about 800m due to tectonic repition by thrust,although the group has been considered to be a continuous sequence attaining 2200m in thickness.We divided the Bagmati Group into three formations,each of which shows an upward\|coarsening and thickening sequence of 200 to 350m in thickness.All sequence is composed of red\|brown orthoquartzite,pink quartzite,micaceous shale and thin sandstone interbed and rhythmite,mottled hematite and hematitic pisolite.We interpret that the Bagmati Group was deposited in shallow lacustrine and desert environments.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.
基金supported by the National Natural Science Foundation of China(61973175,61973172)。
文摘In this paper, a practical decoupling control scheme for fighter aircraft is proposed to achieve high angle of attack(AOA)tracking and super maneuver action by utilizing the thrust vector technology. Firstly, a six degree-of-freedom(DOF) nonlinear model with 12 variables is given. Due to low sufficiency of the aerodynamic actuators at high AOA, a thrust vector model with rotatable engine nozzles is derived. Secondly, the active disturbance rejection control(ADRC) is used to realize a three-channel decoupling control such that a strong coupling between different channels can be treated as total disturbance, which is estimated by the designed extended state observer. The control surface allocation is implemented by the traditional daisy chain method. Finally,the effectiveness of the presented control strategy is demonstrated by some numerical simulation results.
文摘The evolution of the Tarim southwest depression lying at the piedmont of the West Kunlun orogen differs completely from the evolution of the main part of Tarim basin after Later Palaeozoic because the former strongly subsides many times.. Subsidence is related closely to the West Kunlun fold thrust\|belt, thus the evolution of the Depression and the fold\|thrust\|belt reflects clearly the formation and evolution of the West Kunlun and even the Tibet.1 Evolution of the West Kunlun fold\|thrust\|belt\;Thrusting of the fold\|thrust\|belt can be classified into three stages:(1) Devonian thrusting:This is the oldest thrusting distinguished in the northern margin of the West Kunlun while the Silurian—Devonian thrusting was discriminated a few years ago by seismic data in the northern part of the East Kunlun. The Devonian thrusting is proved by the Upper Devonian dynamometamorphic rocks outcropping at the core of the anticline in the Sangzhu lying at the fold\|thrust\|belt. The rocks consist of slightly metamorphic clastic rock and have always been regarded as the Mid\|Proterozoic strata. But they are actually Upper Devonian strata according to the amount of perfect plant fossils that we found recently in the metamorphic rock, and they are overburdened `with an angular unconformity by another reliable Upper\|Devonian conglomerate in the core of the Aqike anticline. A possible explanation for this and its limited lined distribution parallel to the West Kunlun orogen is that they are subjected to metamorphism during the Later Devonian thrusting.