期刊文献+
共找到125,940篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
1
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate
2
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 machine learning Numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Damage prediction of rear plate in Whipple shields based on machine learning method
3
作者 Chenyang Wu Xiangbiao Liao +1 位作者 Lvtan Chen Xiaowei Chen 《Defence Technology(防务技术)》 2025年第8期52-68,共17页
A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,wh... A typical Whipple shield consists of double-layered plates with a certain gap.The space debris impacts the outer plate and is broken into a debris cloud(shattered,molten,vaporized)with dispersed energy and momentum,which reduces the risk of penetrating the bulkhead.In the realm of hypervelocity impact,strain rate(>10^(5)s^(-1))effects are negligible,and fluid dynamics is employed to describe the impact process.Efficient numerical tools for precisely predicting the damage degree can greatly accelerate the design and optimization of advanced protective structures.Current hypervelocity impact research primarily focuses on the interaction between projectile and front plate and the movement of debris cloud.However,the damage mechanism of debris cloud impacts on rear plates-the critical threat component-remains underexplored owing to complex multi-physics processes and prohibitive computational costs.Existing approaches,ranging from semi-empirical equations to a machine learningbased ballistic limit prediction method,are constrained to binary penetration classification.Alternatively,the uneven data from experiments and simulations caused these methods to be ineffective when the projectile has irregular shapes and complicate flight attitude.Therefore,it is urgent to develop a new damage prediction method for predicting the rear plate damage,which can help to gain a deeper understanding of the damage mechanism.In this study,a machine learning(ML)method is developed to predict the damage distribution in the rear plate.Based on the unit velocity space,the discretized information of debris cloud and rear plate damage from rare simulation cases is used as input data for training the ML models,while the generalization ability for damage distribution prediction is tested by other simulation cases with different attack angles.The results demonstrate that the training and prediction accuracies using the Random Forest(RF)algorithm significantly surpass those using Artificial Neural Networks(ANNs)and Support Vector Machine(SVM).The RF-based model effectively identifies damage features in sparsely distributed debris cloud and cumulative effect.This study establishes an expandable new dataset that accommodates additional parameters to improve the prediction accuracy.Results demonstrate the model's ability to overcome data imbalance limitations through debris cloud features,enabling rapid and accurate rear plate damage prediction across wider scenarios with minimal data requirements. 展开更多
关键词 Damage prediction of rear plate Cumulative effect of debris cloud Whipple shield machine learning Random forest
在线阅读 下载PDF
An empirical study on the effect of user engagement on personalized free-content promotion based on a causal machine learning model
4
作者 Shuang Wang Hanbing Xue Lizheng Wang 《中国科学技术大学学报》 CSCD 北大核心 2024年第10期51-62,I0007,共13页
Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogenei... Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies. 展开更多
关键词 free-content promotion user engagement random experiment causal machine learning individual-level treat-ment effect
在线阅读 下载PDF
Physics-informed machine learning model for prediction of ground reflected wave peak overpressure
5
作者 Haoyu Zhang Yuxin Xu +1 位作者 Lihan Xiao Canjie Zhen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期119-133,共15页
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem... The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields. 展开更多
关键词 Blast shock wave Peak overpressure machine learning Physics-informed machine learning
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
6
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
7
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 machine learning COTTON In vitro regeneration Light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Real-time prediction of projectile penetration to laminates by training machine learning models with finite element solver as the trainer 被引量:1
8
作者 Pushkar Wadagbalkar G.R.Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期147-160,共14页
Studies on ballistic penetration to laminates is complicated,but important for design effective protection of structures.Experimental means of study is expensive and can often be dangerous.Numerical simulation has bee... Studies on ballistic penetration to laminates is complicated,but important for design effective protection of structures.Experimental means of study is expensive and can often be dangerous.Numerical simulation has been an excellent supplement,but the computation is time-consuming.Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model.A large number of finite element models were developed;the residual velocities of projectiles from finite element simulations were used as the target data and processed to produce sufficient number of training samples.Study focused on steel 4340tpolyurea laminates with various configurations.Four different 3D shapes of the projectiles were modeled and used in the training.The trained neural network and decision tree model was tested using independently generated test samples using finite element models.The predicted projectile velocity values using the trained machine learning models are then compared with the finite element simulation to verify the effectiveness of the models.Additionally,both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples.Performance of both the models was evaluated and compared.Models trained with Finite element simulation data samples were found capable to give more accurate predication,compared to the models trained with experimental data,because finite element modeling can generate much larger training set,and thus finite element solvers can serve as an excellent teacher.This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model. 展开更多
关键词 Finite element simulations machine learning Neural networks Impact analysis Protective laminates PROJECTILE Decision tree
在线阅读 下载PDF
Parallel solving model for quantified boolean formula based on machine learning
9
作者 李涛 肖南峰 《Journal of Central South University》 SCIE EI CAS 2013年第11期3156-3165,共10页
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ... A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system. 展开更多
关键词 machine learning quantified boolean formula parallel solving knowledge sharing feature extraction performance prediction
在线阅读 下载PDF
基于遗传算法和最小二乘支持向量机的织物剪切性能预测 被引量:2
10
作者 卢桂馥 王勇 +1 位作者 窦易文 Gui-fu Yi-wen 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神... 提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力. Abstract: A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method. 展开更多
关键词 SUPPORT VECTOR machineS sampling data SUPPORT VECTOR machineS generalization ability simulation results linear regression genetic algorithm BP neural network prediction model 线 LS-SVM least square new method
在线阅读 下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:3
11
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
在线阅读 下载PDF
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
12
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 FAULT diagnosis multi-manifold learning particle SWARM optimization support vector machine
在线阅读 下载PDF
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
13
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators machine picking Yield improvement
在线阅读 下载PDF
中国远程学习者学习风格特征的三维模型 被引量:46
14
作者 陈丽 张伟远 郝丹 《开放教育研究》 CSSCI 2005年第2期48-52,共5页
测量远程学习者的学习风格,可以帮助学生选择适合自身学习风格的学习策略,进而提高远程学 习的质量。该文的研究目的在于建构符合我国远程学习者学习风格特征的三维模型,以此作为测量和鉴别我国 远程学习者学习风格特征的理论基础。该... 测量远程学习者的学习风格,可以帮助学生选择适合自身学习风格的学习策略,进而提高远程学 习的质量。该文的研究目的在于建构符合我国远程学习者学习风格特征的三维模型,以此作为测量和鉴别我国 远程学习者学习风格特征的理论基础。该研究以学习的信息加工理论、科尔布的经验学习理论、荣格的人格特 征类型理论等三大学习风格理论模型为基础,综合了生理、社会、心理三层面上的学习风格特征。研究结果形成 了中国远程学习者学习风格的三维模型。该模型分三个维度:1)生理维度:从视觉、听觉、动觉三个角度描述远 程学习者在感觉通道偏好上的学习风格特征;2)经验维度:描述远程学习者与其社会性有关的四种学习方式偏 好,即原理型、经验型、实践型、思考型;3)心理维度:主要涵盖了与远程学习风格相关的人格心理特征类型,即内 向与外向、现实与幻想、理性与感性、计划与随意。作者希望该模型能全面概括我国远程学习者的学习风格类型 特点,并能作为我国远程学习者学习风格测量工具开发的理论基础。 展开更多
关键词
在线阅读 下载PDF
融合Q-learning的A^(*)预引导蚁群路径规划算法
15
作者 殷笑天 杨丽英 +1 位作者 刘干 何玉庆 《传感器与微系统》 北大核心 2025年第8期143-147,153,共6页
针对传统蚁群优化(ACO)算法在复杂环境路径规划中存在易陷入局部最优、收敛速度慢及避障能力不足的问题,提出了一种融合Q-learning基于分层信息素机制的A^(*)算法预引导蚁群路径规划算法-QHACO算法。首先,通过A^(*)算法预分配全局信息素... 针对传统蚁群优化(ACO)算法在复杂环境路径规划中存在易陷入局部最优、收敛速度慢及避障能力不足的问题,提出了一种融合Q-learning基于分层信息素机制的A^(*)算法预引导蚁群路径规划算法-QHACO算法。首先,通过A^(*)算法预分配全局信息素,引导初始路径快速逼近最优解;其次,构建全局-局部双层信息素协同模型,利用全局层保留历史精英路径经验、局部层实时响应环境变化;最后,引入Q-learning方向性奖励函数优化决策过程,在路径拐点与障碍边缘施加强化引导信号。实验表明:在25×24中等复杂度地图中,QHACO算法较传统ACO算法最优路径缩短22.7%,收敛速度提升98.7%;在50×50高密度障碍环境中,最优路径长度优化16.9%,迭代次数减少95.1%。相比传统ACO算法,QHACO算法在最优性、收敛速度与避障能力上均有显著提升,展现出较强环境适应性。 展开更多
关键词 Q-learning A^(%MUL%)
在线阅读 下载PDF
Development of New Capabilities Using Machine Learning for Space Weather Prediction
16
作者 LIU Siqing CHEN Yanhong +7 位作者 LUO Bingxian CUI Yanmei ZHONG Qiuzhen WANG Jingjing YUAN Tianjiao HU Qinghua HUANG Xin CHEN Hong 《空间科学学报》 CAS CSCD 北大核心 2020年第5期875-883,共9页
With the development of space exploration and space environment measurements,the numerous observations of solar,solar wind,and near Earth space environment have been obtained in last 20 years.The accumulation of multi... With the development of space exploration and space environment measurements,the numerous observations of solar,solar wind,and near Earth space environment have been obtained in last 20 years.The accumulation of multiple data makes it possible to better use machine learning technique,which has achieved unforeseen results in industrial applications in last decades,for developing new approaches and models in space weather investigation and prediction.In this paper,the efforts on the forecasting methods for space weather indices,events,and parameters using machine learning are briefly introduced based on the study works in recent years.These investigations indicate that machine learning,especially deep learning technique can be used in automatic characteristic identification,solar eruption prediction,space weather forecasting for solar and geomagnetic indices,and modeling of space environment parameters. 展开更多
关键词 Space weather forecasting machine learning Deep learning
在线阅读 下载PDF
Machine learning molecular dynamics simulations of liquid methanol
17
作者 Jie Qian Junfan Xia Bin Jiang 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期12-21,I0009,I0010,共12页
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular... As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems. 展开更多
关键词 liquid methanol molecular dynamics machine learning hydrogen bond force field
在线阅读 下载PDF
基于提升小波和LS-SVM的大坝变形预测 被引量:7
18
作者 秦栋 郑雪琴 许后磊 《水电能源科学》 北大核心 2010年第9期64-66,共3页
提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该... 提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该方法较符合实际情况,具有很高的预测精度和良好的泛化能力。 展开更多
关键词 LS-SVM Support Vector machine Least Square LIFTING Wavelet Based
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
19
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词
在线阅读 下载PDF
基于鲁棒LS-SVM的控制图模式识别 被引量:1
20
作者 程志强 马义中 Zhi-qiang Yi-zhong 《计量学报》 CSCD 北大核心 2009年第6期-,共3页
提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练... 提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练结果泛化能力强,计算方法简单迅速. Abstract: A technique based on the robust least squares support vector machines(LS-SVM) used for control charts pattern recognition is proposed, the applied feasibility and validity of this technique in process quality diagnosis is also investigated. Theoretical research and experimental results show that this approach performs well upon the six typical control charts pattern recognition with high recognition accuracy, simple computation and fast training process, and the preeminent generalization ability on the condition of small sample size. 展开更多
关键词 LS-SVM Robust Based PATTERN RECOGNITION PATTERN RECOGNITION control charts support vector machines generalization ability Theoretical research training PROCESS PROCESS quality least SQUARES small sample
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部