Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and ...Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.展开更多
The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric...The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric_acid rare earth solution by foliage spraying. The results showed that the seedling heights sprayed with 100 和 1 000 mg·L -1 of the first group and with 50 和 100 mg·L -1 of the second group were significantly higher than the controls, and the diameter at ground level sprayed with 300 mg·L -1 of the second group was significantly greater than the control, being 26.92% more than the latter; except for spraying with 0 mg5L -1 and 700~1 500 mg5L -1 of the second group, the seedling dry weight above ground of others was 29.13%~73.91% greater than the control, whereas the seedling dry weight under ground of others was 20.78%~116.88% greater than the control; the contents of chlorophyll a and chlorophyll b for all spraying seedling were 91.67%~191.67% and 87.5%~306.25% greater than the control, respectively, and soluble proteins and soluble sugars were 16.00%~179.78% and 10.73%~105.65% greater than the control, respectively. Compared with the control, the activity of SOD tended to increase, whereas the contents of MDA decreased. These indicated that spraying leaves with optimum concentration of mixed nitric_acid rare earth solution could markedly promote the growth of seedlings and improve resistance ability of V. montana seedlings to bad environment. On the whole, the effects of spraying the leaves of seedling with 50~500 mg5L -1 mixed nitric_acid rare earth solution, which were derived from seeds soaking with 300 mg·L -1 mixed nitric_acid rare earth solution, were good.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storag...In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.展开更多
As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the...As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the air becomes greater than that of the strata. This cyclic phenomenon, also known as the "thermal damping effect" will continue throughout the year reducing the effect of surface air temperature variation. The objective of this paper is to quantify the thermal damping effect in vertical underground airways. A nonlinear autoregressive time series with external input(NARX) algorithm was used as a novel method to predict the dry-bulb temperature(Td) at the bottom of intake shafts as a function of surface air temperature. Analyses demonstrated that the artificial neural network(ANN) model could accurately predict the temperature at the bottom of a shaft. Furthermore, an attempt was made to quantify typical "damping coefficient" for both production and ventilation shafts through simple linear regression models. Comparisons between the collected climatic data and the regression-based predictions show that a simple linear regression model provides an acceptable accuracy when predicting the Tdat the bottom of intake shafts.展开更多
The indoor toxicity determination for several chemicals were carried out on Septoria pini-putmlae andDothistroma pini. The resutts showed that Carbendazol, Zineb and Thiophanate-methyl had better effect of killingthe ...The indoor toxicity determination for several chemicals were carried out on Septoria pini-putmlae andDothistroma pini. The resutts showed that Carbendazol, Zineb and Thiophanate-methyl had better effect of killingthe fungi. The field experiment indicated that Zineb wettable powder with concentrations of 1:200, 1:300 and 1:500had 79.2%, 67.2% and 59.7% control results respectively. The control results of 1:200 Carbendazol wettable powder and 1:200 Thiophahate-methyl wettable powder were 67.7% and 67% respectively.展开更多
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ...Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.展开更多
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmos...High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmost zone-width is shrinking down to 50 nm or even below,patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect.The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction(PEC),because of the large variety in the line width.This work develops a new strategy,nicknamed as local proximity effect correction(LPEC),efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction.By this way,50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated.Their imaging capability in soft(1.3 keV)and hard(9 keV)x-ray,respectively,has been demonstrated in Shanghai Synchrotron Radiation Facility(SSRF)with the resolution of 50 nm.The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equa...The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equation of tree and the C-D equation of tree organ, respectively. An equation describing the relationship between mean leaf area u and density was formulated that fit the u-data well. The relationship between mean tree mass w and the ratio of each organ to mean tree mass (wo/ w) was examined. With increasing w, the stem mass ratio wS/w increased, whereas the branch mass ratio wB/w and the leaf mass ratio wL/w decreased. The yield difference between the lowest-density stand and the high-density stand became greater with stand growth. However, the yield of the mid-density stand was slightly lower than the yield of the high-density stand during the experimental period. To produce the most desirable combination of demanding individual-tree size and relative high stem yield, the mid-density is recommended as proper planting density for future management of A. auriculiformis stands.展开更多
Effective atomic numbers for photon energy absorption(ZPEA_(eff)) and their corresponding electron numbers (NPEA_(eff)), and effective macroscopic removal cross sections of fast neutrons(RR) were calculated for 27 dif...Effective atomic numbers for photon energy absorption(ZPEA_(eff)) and their corresponding electron numbers (NPEA_(eff)), and effective macroscopic removal cross sections of fast neutrons(RR) were calculated for 27 different types of three-dimensional dosimeters, four types of phantom materials, and water. The values of ZPEA_(eff) and NPEA_(eff) were obtained using the direct method for energies ranging from 10 keV to 20 MeV. Results are presented relative to water, for direct comparison over the range of examined energies. The effect of monomers that are used in polymer gel dosimeters on the water equivalence is discussed. The relation between Σ_R and hydrogen content was studied. Micelle gel dosimeters are highly promising because our results demonstrate perfect matching between the effective atomic number, electron density number, and fast neutron attenuation coefficient of water.展开更多
van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type phot...van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.展开更多
Projectile size effect is of great importance since the scaling researches are extensively applied to concrete penetration investigations. This paper numerically deals with the projectile size effect on penetration re...Projectile size effect is of great importance since the scaling researches are extensively applied to concrete penetration investigations. This paper numerically deals with the projectile size effect on penetration resistance via the recently developed Lattice Discrete Particles Model(LDPM) which is featured with mesoscale constitutive laws governing the interaction between adjacent particles to account for cohesive fracture, strain hardening in compression and compaction due to pore collapse. Simulations of two different penetration tests are carried to shed some light on the size effect issue. The penetration numerical model is validated by matching the projectile deceleration curve of and predicting the depth of penetration(DOP). By constant velocity penetration simulations, the target resistance is found to be dependent on the projectile size. By best fitting numerical results of constant velocity penetration, a size effect law for target resistance is proposed and validated against literature data. Moreover, the size effect is numerically obtained in the projectile with longer extended nose part meanwhile the shorter extended nose is found to improve the DOP since the projectile nose is sharpened.展开更多
As a novel type of foundation in beach and shallow sea, the bucket structure is especially suitable for complex conditions such as soft clay ground and the worse types of sea environments. In this paper, the bearing c...As a novel type of foundation in beach and shallow sea, the bucket structure is especially suitable for complex conditions such as soft clay ground and the worse types of sea environments. In this paper, the bearing capacity of a multi-bucket structure is studied by experiments with a single bucket and four-bucket foundation in a saturated sand layer. Based on the experimental data and numerical analysis results, the bearing capacity behavior and the bucket group effect are compared and analyzed. Furthermore, some influential factors, such as the soil type, the ratio of length to diameter L/D, the ratio of the bucket spacing to the bucket diameter S/D, and the bucket number are introduced and their effects on the multi-bucket structural capacity are investigated. The vertical static capacity adjustment factor is introduced to evaluate the bucket group effects of the multi-bucket foundation.展开更多
基金funded by a Grant-in-Aid for Scientific Research(B)(Japan Society for The Promotion of Science,21H02849)Grant-in-Aid for Scientific Research(C)(Japan Society for The Promotion of Science,23K07013)+2 种基金Grant-in-Aid for Transformative Research Areas(A)(Japan Society for The Promotion of Science,JP21H05173)Grant-in-Aid by the Smoking Research FoundationGrant-in-Aid by the Telecommunications Advancement Foundation.
文摘Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.
文摘The seedlings of Vernicia montana derived from seeds soaking with water (the first group)or 300 mg5L -1 mixed nitric_acid rare earth solution (the second group) were treated with various concentrations of mixed nitric_acid rare earth solution by foliage spraying. The results showed that the seedling heights sprayed with 100 和 1 000 mg·L -1 of the first group and with 50 和 100 mg·L -1 of the second group were significantly higher than the controls, and the diameter at ground level sprayed with 300 mg·L -1 of the second group was significantly greater than the control, being 26.92% more than the latter; except for spraying with 0 mg5L -1 and 700~1 500 mg5L -1 of the second group, the seedling dry weight above ground of others was 29.13%~73.91% greater than the control, whereas the seedling dry weight under ground of others was 20.78%~116.88% greater than the control; the contents of chlorophyll a and chlorophyll b for all spraying seedling were 91.67%~191.67% and 87.5%~306.25% greater than the control, respectively, and soluble proteins and soluble sugars were 16.00%~179.78% and 10.73%~105.65% greater than the control, respectively. Compared with the control, the activity of SOD tended to increase, whereas the contents of MDA decreased. These indicated that spraying leaves with optimum concentration of mixed nitric_acid rare earth solution could markedly promote the growth of seedlings and improve resistance ability of V. montana seedlings to bad environment. On the whole, the effects of spraying the leaves of seedling with 50~500 mg5L -1 mixed nitric_acid rare earth solution, which were derived from seeds soaking with 300 mg·L -1 mixed nitric_acid rare earth solution, were good.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金Supported by the CNPC Science and Technology Major Project(2015E-4002)
文摘In view of complex geological characteristics and alternating loading conditions associated with cyclic large amount of gas injection and withdrawal in underground gas storage(UGS) of China, a series of key gas storage construction technologies were established, mainly including UGS site selection and evaluation, key index design, well drilling and completion, surface engineering and operational risk warning and assessment, etc. The effect of field application was discussed and summarized. Firstly, trap dynamic sealing capacity evaluation technology for conversion of UGS from the fault depleted or partially depleted gas reservoirs. A key index design method mainly based on the effective gas storage capacity design for water flooded heterogeneous gas reservoirs was proposed. To effectively guide the engineering construction of UGS, the safe well drilling, high quality cementing and high pressure and large flow surface injection and production engineering optimization suitable for long-term alternate loading condition and ultra-deep and ultra-low temperature formation were developed. The core surface equipment like high pressure gas injection compressor can be manufactured by our own. Last, the full-system operational risk warning and assessment technology for UGS was set up. The above 5 key technologies have been utilized in site selection, development scheme design, engineering construction and annual operations of 6 UGS groups, e.g. the Hutubi UGS in Xinjiang. To date, designed main indexes are highly consistent with actural performance, the 6 UGS groups have the load capacity of over 7.5 billion cubic meters of working gas volume and all the storage facilities have been running efficiently and safely.
基金funded by National Institute for Occupational Safety and Health (NIOSH) (No. 2014-N-15795, 2014)
文摘As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the air becomes greater than that of the strata. This cyclic phenomenon, also known as the "thermal damping effect" will continue throughout the year reducing the effect of surface air temperature variation. The objective of this paper is to quantify the thermal damping effect in vertical underground airways. A nonlinear autoregressive time series with external input(NARX) algorithm was used as a novel method to predict the dry-bulb temperature(Td) at the bottom of intake shafts as a function of surface air temperature. Analyses demonstrated that the artificial neural network(ANN) model could accurately predict the temperature at the bottom of a shaft. Furthermore, an attempt was made to quantify typical "damping coefficient" for both production and ventilation shafts through simple linear regression models. Comparisons between the collected climatic data and the regression-based predictions show that a simple linear regression model provides an acceptable accuracy when predicting the Tdat the bottom of intake shafts.
文摘The indoor toxicity determination for several chemicals were carried out on Septoria pini-putmlae andDothistroma pini. The resutts showed that Carbendazol, Zineb and Thiophanate-methyl had better effect of killingthe fungi. The field experiment indicated that Zineb wettable powder with concentrations of 1:200, 1:300 and 1:500had 79.2%, 67.2% and 59.7% control results respectively. The control results of 1:200 Carbendazol wettable powder and 1:200 Thiophahate-methyl wettable powder were 67.7% and 67% respectively.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52378401,52278504)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1732104)China Postdoctoral Science Foundation(Grant No.2017M611443)Shanghai STCSM2019-11-20 Grant,China(Grant No.19142202700)。
文摘High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology.When the outmost zone-width is shrinking down to 50 nm or even below,patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect.The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction(PEC),because of the large variety in the line width.This work develops a new strategy,nicknamed as local proximity effect correction(LPEC),efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction.By this way,50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated.Their imaging capability in soft(1.3 keV)and hard(9 keV)x-ray,respectively,has been demonstrated in Shanghai Synchrotron Radiation Facility(SSRF)with the resolution of 50 nm.The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
基金supported by the Forestry Technology Popularization Demonstration Project of the Central Government of China(No.[2015]GDTK-07)
文摘The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equation of tree and the C-D equation of tree organ, respectively. An equation describing the relationship between mean leaf area u and density was formulated that fit the u-data well. The relationship between mean tree mass w and the ratio of each organ to mean tree mass (wo/ w) was examined. With increasing w, the stem mass ratio wS/w increased, whereas the branch mass ratio wB/w and the leaf mass ratio wL/w decreased. The yield difference between the lowest-density stand and the high-density stand became greater with stand growth. However, the yield of the mid-density stand was slightly lower than the yield of the high-density stand during the experimental period. To produce the most desirable combination of demanding individual-tree size and relative high stem yield, the mid-density is recommended as proper planting density for future management of A. auriculiformis stands.
文摘Effective atomic numbers for photon energy absorption(ZPEA_(eff)) and their corresponding electron numbers (NPEA_(eff)), and effective macroscopic removal cross sections of fast neutrons(RR) were calculated for 27 different types of three-dimensional dosimeters, four types of phantom materials, and water. The values of ZPEA_(eff) and NPEA_(eff) were obtained using the direct method for energies ranging from 10 keV to 20 MeV. Results are presented relative to water, for direct comparison over the range of examined energies. The effect of monomers that are used in polymer gel dosimeters on the water equivalence is discussed. The relation between Σ_R and hydrogen content was studied. Micelle gel dosimeters are highly promising because our results demonstrate perfect matching between the effective atomic number, electron density number, and fast neutron attenuation coefficient of water.
基金supported by the National Key Research and Development Program of China(No.2022YFB3604500,No.2022YFB3604501)the National Natural Science Foundation of China(No.52172141)the Technology Development Project of Shanxi-Zheda Institude of Advanced Materials and Chemical Engineering(No.2022SX-TD017).
文摘van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20170824)the Fundamental Research Funds for the Central Universities (No. 30917011343)
文摘Projectile size effect is of great importance since the scaling researches are extensively applied to concrete penetration investigations. This paper numerically deals with the projectile size effect on penetration resistance via the recently developed Lattice Discrete Particles Model(LDPM) which is featured with mesoscale constitutive laws governing the interaction between adjacent particles to account for cohesive fracture, strain hardening in compression and compaction due to pore collapse. Simulations of two different penetration tests are carried to shed some light on the size effect issue. The penetration numerical model is validated by matching the projectile deceleration curve of and predicting the depth of penetration(DOP). By constant velocity penetration simulations, the target resistance is found to be dependent on the projectile size. By best fitting numerical results of constant velocity penetration, a size effect law for target resistance is proposed and validated against literature data. Moreover, the size effect is numerically obtained in the projectile with longer extended nose part meanwhile the shorter extended nose is found to improve the DOP since the projectile nose is sharpened.
文摘As a novel type of foundation in beach and shallow sea, the bucket structure is especially suitable for complex conditions such as soft clay ground and the worse types of sea environments. In this paper, the bearing capacity of a multi-bucket structure is studied by experiments with a single bucket and four-bucket foundation in a saturated sand layer. Based on the experimental data and numerical analysis results, the bearing capacity behavior and the bucket group effect are compared and analyzed. Furthermore, some influential factors, such as the soil type, the ratio of length to diameter L/D, the ratio of the bucket spacing to the bucket diameter S/D, and the bucket number are introduced and their effects on the multi-bucket structural capacity are investigated. The vertical static capacity adjustment factor is introduced to evaluate the bucket group effects of the multi-bucket foundation.