期刊文献+
共找到90,353篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical Properties and Thermal Shock Resistance of SrAl_(2)Si_(2)O_(8) Reinforced BN Ceramic Composites
1
作者 WANG Bo CAI Delong +7 位作者 ZHU Qishuai LI Daxin YANG Zhihua DUAN Xiaoming LI Yanan WANG Xuan JIA Dechang ZHOU Yu 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1182-1188,共7页
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ... Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually. 展开更多
关键词 BN MATRIX composite hot-press SINTERING mechanical PROPERTY thermal shock resistance service reliability
在线阅读 下载PDF
FDM - 3D printing of thermoplastic composites with high energetic solids content designed for gun propellants
2
作者 Marin Alexandru Ovidiu George Iorga +8 位作者 Gabriela Toader Cristiana Epure Mihail Munteanu Adrian Nicolae Rotariu Marius Marmureanu Gabriel Flavius Noja Aurel Diacon Tudor Viorel Tiganescu Florin Marian Dirloman 《Defence Technology(防务技术)》 2025年第7期165-179,共15页
This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Depos... This study represents an important step forward in the domain of additive manufacturing of energetic materials.It presents the successful formulation and fabrication by 3D printing of gun propellants using Fused Deposition Modeling(FDM)technology,highlighting the immense potential of this innovative approach.The use of FDM additive manufacturing technology to print gun propellants is a significant advancement due to its novel application in this field,which has not been previously reported.Through this study,the potential of FDM 3D-printing in the production of high-performance energetic composites is demonstrated,and also a new standard for manufacturability in this field can be established.The thermoplastic composites developed in this study are characterized by a notably high energetic solids content,comprising 70%hexogen(RDX)and 10%nitrocellulose(NC),which surpasses the conventional limit of 60%energetic solids typically achieved in stereolithography and light-curing 3D printing methods.The primary objective of the study was to optimize the formulation,enhance performance,and establish an equilibrium between printability and propellant efficacy.Among the three energetic for-mulations developed for 3D printing feedstock,only two were suitable for printing via the FDM tech-nique.Notably,the formulation consisting of 70%RDX,10%NC,and 20%polycaprolactone(PCL)emerged as the most advantageous option for gun propellants,owing to its exceptional processability,ease of printability,and high energetic performance. 展开更多
关键词 Propellants FDM 3D-printing EXPLOSIVE RDX Thermoplastic energetic composite Additive manufacturing
在线阅读 下载PDF
Numerical and experimental investigation on the formability of stainless steel-copper composites during micro deep drawing
3
作者 QI Yan-yang MA Xiao-guang +6 位作者 JIANG Zheng-yi MA Li-nan WANG Zhi-hua ZHOU Cun-long HASAN Mahadi DOBRZAŃSKI Leszek A. ZHAO Jing-wei 《Journal of Central South University》 2025年第4期1237-1251,共15页
In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural feature... In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural features.Then the influence of annealing temperature on the formability of stainless steel-copper composites and the quality of micro composite cups manufactured by micro deep drawing(MDD)were investigated,and the underlying mechanism was analyzed.Three finite element(FE)models,including basic FE model,Voronoi FE model and surface morphological FE model,were developed to analyze the forming performance of stainless steel-copper composites during MDD.The results show that the stainless steel-copper composites annealed at 900℃possess the best plasticity owing to the homogeneous and refined microstructure in both stainless steel and copper matrixes,and the micro composite cup with specimen annealed at 900℃exhibits a uniform wall thickness as well as high surface quality with the fewest wrinkles.The results obtained from the surface morphological FE model considering material inhomogeneity and surface morphology of the composites are the closest to the experimental results compared to the basic and Voronoi FE model.During MDD process,the drawing forces decrease with increasing annealing temperature as a consequence of the strength reduction. 展开更多
关键词 micro deep drawing annealing temperature stainless steel-copper composites FORMABILITY WRINKLING finite element method
在线阅读 下载PDF
Fabrication of RDX Based Composites via Water Flotation and Monometallic Polydopamine Coatings
4
作者 LI Xiao QIN Liang +5 位作者 XU Jian-xin ZHANG Lu-yao SHEN Jin-jie LAN Guan-chao WANG Jian-long CHEN Li-zhen 《火炸药学报》 北大核心 2025年第8期763-769,I0004,共8页
To enhance the overall performance of cyclotrimethylenetrinitramine(RDX),a modification strategy for RDX via in situ coordination with monometallic polydopamine(PDA)coatings(PDA-Fe,PDA-Cu,and PDA-Pb)was developed.The ... To enhance the overall performance of cyclotrimethylenetrinitramine(RDX),a modification strategy for RDX via in situ coordination with monometallic polydopamine(PDA)coatings(PDA-Fe,PDA-Cu,and PDA-Pb)was developed.The thermal properties of pristine RDX and its modified variants(RDX@PDA-Fe,RDX@PDA-Cu,RDX@PDA-Pb)were characterized using differential scanning calorimetry(DSC)and accelerating rate calorimetry(ARC).The impact sensitivity of these materials was evaluated via the characteristic drop-height method.The results demonstrate that PDA-metal metal coatings—formed through coordination between PDA and single metal ions(Fe^(3+),Cu^(2+),or Pb^(2+))—significantly enhance RDX′s thermal stability while attenuating its mechanical sensitivity.These coatings act as energy-absorbing barriers against external stimuli,effectively mitigating RDX′s sensitivity.Furthermore,they elevate RDX′s thermal stability by increasing its decomposition onset temperature and accelerating its decomposition kinetics.The monometallic coatings also catalyze RDX′s thermal decomposition and combustion,with Cu and Pb exhibiting particularly distinct catalytic effects. 展开更多
关键词 physical chemistry RDX situ coordination composites catalytic mechanic
在线阅读 下载PDF
Low-value biomass-derived carbon composites for electromagnetic wave absorption and shielding: A review
5
作者 Sumanta Sahoo Rajesh Kumar Sung Soo Han 《新型炭材料(中英文)》 北大核心 2025年第2期293-316,共24页
The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face... The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized. 展开更多
关键词 Biomass carbon composites Dielectric loss EMI shielding EM wave absorption
在线阅读 下载PDF
Mechanical properties and wear behavior of extruded basalt fibers/7075 aluminum matrix composites used for drill pipes
6
作者 MA Yin-long SUN Zhi-gang +3 位作者 XIONG Hong-wei REN Jie ZHAO Jing-jing GUO Cheng-bin 《Journal of Central South University》 2025年第1期21-33,共13页
Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot presse... Basalt fibers/7075 aluminum matrix composites were studied to meet the demand of aluminum alloy drill pipes for material wear resistance.The composites with different basalt fiber additions were prepared by hot pressed sintering and hot extrusion.The mechanical properties as well as friction and wear properties of the composites were studied by microstructure analysis,tensile experiments,friction and wear experiments.The results showed that basalt fibers were oriented and uniformly distributed and led to local grain refinement in the alloy matrix.The hardness and elongation of the composites were improved.The friction coefficient of the composites increased and then decreased,and the maximum wear depth and wear amount decreased,then increased,then decreased again with the growth of basalt fiber addition.Meanwhile,the inclusion of basalt fibers mitigated the uneven wear of the extruded 7075 aluminum alloy.The value of wear depth difference of 7075-0.2BF was the smallest,and that of 7075-2.0BF was close to it.The maximum wear depth and wear volume the 7075-0.2BF and 7075-2.0BF were also the smallest.The inhibition of uneven wear by basalt fibers enhanced of wear resistance for 7075 aluminum alloy,which has reference significance for improving the performance of aluminum alloy drill pipes. 展开更多
关键词 aluminum matrix composites basalt fibers mechanical properties wear behavior
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
7
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
8
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
在线阅读 下载PDF
2D Plain and 3D Needle-punched C/SiC Composites:Low-velocity Impact Damage Behavior and Failure Mechanism
9
作者 LUAN Xingang HE Dianwei +1 位作者 TU Jianyong CHENG Laifei 《无机材料学报》 北大核心 2025年第2期205-214,I0004,共11页
Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage a... Continuous carbon fiber reinforced silicon carbide(C/SiC)composites are often subjected to low-velocity impacts when utilized as structural materials for thermal protection.However,research on in-plane impact damage and multiple impact damage of C/SiC composites is limited.To investigate the in-plane impact damage behavior of C/SiC composites,a drop-weight impact test method was developed for strip samples,and these results were subsequently compared with those of C/SiC composite plates.Results show that the in-plane impact behavior of C/SiC strip samples is similar to that of C/SiC composite plates.Variation of the impact load with displacement is characterized by three stages:a nearly linear stage,a severe load drop stage,and a rebound stage where displacement occurs after the impact energy exceeds its peak value.Impact damage behavior under single and multiple impacts on 2D plain and 3D needled C/SiC composites was investigated at different impact energies and durations.Crack propagation in C/SiC composites was studied by computerized tomography(CT)technique.In the 2D plain C/SiC composite,load propagation between layers is hindered during impact,leading to delamination and 90°fiber brittle fracture.The crack length perpendicular to the impact direction increases with impact energy increases,resulting in more serious 0°fiber fracture and a larger area of fiber loss.In the 3D needled C/SiC composite,load propagates between the layers during impact through the connection of needled fibers.The fibers continue to provide substantial structural support,with notable instances of fiber pull-off and debonding.Consequently,the impact resistance is superior to that of 2D plain C/SiC composite.When the 3D needled C/SiC composite undergoes two successive impacts of 1.5 J,the energy absorption efficiency of the second impact is significantly lower,accompanied by a smaller impact displacement.Moreover,the total energy absorption efficiency of these two impacts of 1.5 J is lower than that of a single 3.0 J impact. 展开更多
关键词 ceramic-matrix composite FRACTURE low-velocity impact computerized tomography analysis
在线阅读 下载PDF
Ablative Properties of SiC_(p) Doped C_(f)/Li_(2)O-Al_(2)O_(3)-SiO_(2) Composites
10
作者 LIN Yuanwei JING Zhao +4 位作者 CHEN Hetuo LI Jiaheng QIN Xianpeng ZHOU Guohong WANG Shiwei 《无机材料学报》 北大核心 2025年第10期1153-1162,共10页
In a high heat flux ablative environment,the surface temperature of aircraft rises rapidly,leading to traditional high thermal conductivity materials being ineffective at protecting internal metal components.In this s... In a high heat flux ablative environment,the surface temperature of aircraft rises rapidly,leading to traditional high thermal conductivity materials being ineffective at protecting internal metal components.In this study,continuous carbon fiber reinforced Li_(2)O-Al_(2)O_(3)-SiO_(2)(C_(f)/LAS)glass ceramic composites doped with SiC particles(SiC_(p))were prepared by slurry immersion winding and hot pressing sintering.Effect of matrix crystallinity on ablative properties of the composites under ultra-high heat flux was investigated.By utilizing heat absorption and low thermal conductivity characteristics associated with SiO_(2)gasification within composite materials,both surface and internal temperatures of these materials are effectively reduced,thereby ensuring the safe operation of aircraft and electronic devices.Results indicate that the average linear ablation rate of composites doped with 10%(in mass)of SiC_(p)significantly decreases at a heat flux of 20 MW/m^(2).Transmission electron microscope observation reveals that the doped glass matrix exhibits increased crystallinity,reduced internal stress,and minimized lattice distortion,thereby enhancing the composites’high-temperature performance.However,excessive SiC_(p)doping leads to reduced crystallinity and deteriorated ablation performance.Ultimately,the average linear ablation rate of C_(f)/LAS composites with 10%(in mass)SiC_(p)at 20 MW/m^(2)heat flux is comparable to that of commercial carbon/carbon composites,accompanied by providing lower thermal conductivity and higher bending strength.This novel high-performance C_(f)/LAS composite is cost-effective,short-cycled,and suitable for mass production,offering promising potential for widespread application in ablation-resistant components of hypersonic vehicles. 展开更多
关键词 ablation-resistant C_(f)/LAS composite SiC doping crystallinity of glass matrix long-range ordered
在线阅读 下载PDF
Ballistic impact properties of woven bamboo-woven E-glass-unsaturated polyester hybrid composites 被引量:1
11
作者 Aidy Ali Rabiatun Adawiyah +7 位作者 Kannan Rassiah Wei Kuan Ng Faiz Arifin Faiz Othman Muhammad Shauqi Hazin M.K. Faidzi M.F. Abdullah M.M.H. Megat Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期282-294,共13页
In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental e... In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications. 展开更多
关键词 Woven BAMBOO E glass Hybrid composites BALLISTIC LIMIT VELOCITY Energy ABSORPTION
在线阅读 下载PDF
Cyclic behavior of root-loess composites under direct simple shear test conditions and insights from discrete element method modeling
12
作者 SUN Yuan LI Hui CHENG Zhifeng 《水利水电技术(中英文)》 北大核心 2025年第S1期665-680,共16页
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f... Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°. 展开更多
关键词 root-soil composite cyclic direct simple shear tests PFC^(3D)
在线阅读 下载PDF
Modeling mechanical behaviors of composites with various ratios of matrixeinclusion properties using movable cellular automaton method
13
作者 A.Yu.SMOLIN E.V.SHILKO +3 位作者 S.V.ASTAFUROV I.S.KONOVALENKO S.P.BUYAKOVA S.G.PSAKHIE 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期18-34,共17页
Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is use... Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy. 展开更多
关键词 composites Metal CERAMICS ZIRCONIA CERAMICS Gel MODELING Movable cellular AUTOMATA MANY-BODY interaction
在线阅读 下载PDF
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration 被引量:1
14
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 C/C composites ZrB_(2)-ZrC-SiC Vacuum filtration Reactive melt infiltration Ablation.
在线阅读 下载PDF
Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels
15
作者 Maliwan Subsadsana Pitsanuphong Kham-or +2 位作者 Pakpoom Sangdara Pirom Suwannasom Chalerm Ruangviriyachai 《燃料化学学报》 EI CAS CSCD 北大核心 2017年第7期805-816,共12页
This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized... This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis. 展开更多
关键词 self-assembly of surfactant ZSM-5/MCM-41 composite micro-mesoporous structure HYDROCRACKING process LIQUID biofuels
在线阅读 下载PDF
Experimental and simulation studies on delamination strength of laminated glass composites having polyvinyl butyral and ethyl vinyl acetate inter-layers of different critical thicknesses 被引量:2
16
作者 Ajitanshu Vedrtnam 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期313-317,共5页
The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The ef... The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The effect of inter-layer thickness, delamination load, and inter-layer type on DS is clearly observed from this brief study. It is concluded that inter-layer thickness has the significant role in determining the DS of LGs. The statistical analysis confirmed the strong association of DS with inter-layer thickness and the interlayer type. It was found that the LG-PVB composite has the comparatively lower DS than LG-EVA composite and inter-layer thickness has the prominent role in the determination of DS in the LG-EVAcomposite. There is an increment in DS with an increment in critical inter-layer thickness in both LG-EVA and LG-PVBcomposites. The increment in the inter-layer thickness from 0.38 mm to 0.76 mm increases DS significantly; whereas, the further increment in the inter-layer thickness to the higher value has a lesser effect. The finite element model was constituted(without considering the effect of temperature) for determining DS of LG composite. The simulation results were in a good match with experimental results. The results of the present work can be utilized by the design engineers while selecting LG for structural applications. 展开更多
关键词 DELAMINATION STRENGTH Composite material PVB LAMINATED glass Finite element analysis
在线阅读 下载PDF
Influence of B4C and ZrB2 reinforcements on microstructural,mechanical and wear behaviour of AA 2014 aluminium matrix hybrid composites
17
作者 Ramesh Babu R Rajendran C +1 位作者 Saiyathibrahim A Rajkumar Velu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期242-254,共13页
Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research ... Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition. 展开更多
关键词 AA 2014 alloy Stir casting Hybrid composite HARDNESS Tensile strength Specific wear rate
在线阅读 下载PDF
耐高温起泡剂膦甲基酚醛树脂PMP的合成及性能 被引量:1
18
作者 何耀春 黄步耕 侯士法 《油田化学》 CAS CSCD 北大核心 2004年第4期301-303,306,共4页
由苯酚、甲醛、PCl3合成了水溶性固体膦甲基酚醛树脂(PMP),其HLB值为20 7。简介了合成方法,考察了PMP作为起泡剂的配方性能。PMP溶液室温发泡体积Vf随浓度增大(5~20g/L)而略有增大,泡沫半衰期t1/2在浓度12 5g/L时最长,为20 2min,此时Vf... 由苯酚、甲醛、PCl3合成了水溶性固体膦甲基酚醛树脂(PMP),其HLB值为20 7。简介了合成方法,考察了PMP作为起泡剂的配方性能。PMP溶液室温发泡体积Vf随浓度增大(5~20g/L)而略有增大,泡沫半衰期t1/2在浓度12 5g/L时最长,为20 2min,此时Vf=520mL(/100mL溶液)。在该浓度PMP溶液中分别加入CMC、硅酸钠、三乙醇胺、膨润土使Vf值略降,t1/2值在适宜加量范围大幅延长,加量分别为1 0、2 0、12 5、40g/L时有最大值370 0、85 2、180 2、174 2min;这4个复配PMP/添加剂溶液在温度升高时(30~90℃)Vf值增大但t1/2值大幅缩短。12 5g/LPMP溶液在150~200℃滚动16h后室温下Vf值不变,t1/2值随滚动温度升高而降低,200℃时为11 3min;12 5/2 0/10/40g/LPMP/硅酸钠/三乙醇胺/膨润土溶液在200℃滚动16h后,室温下Vf值为470mL,t1/2值高达50h。PMP为耐高温性能良好的起泡剂,可与硅酸钠、三乙醇胺、膨润土复配使用。图2表4参10。 展开更多
关键词 PMP 2.5g PCl3 HLB 40g f 20g CMC
在线阅读 下载PDF
Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites 被引量:4
19
作者 曹勇 吴义强 《Journal of Central South University》 SCIE EI CAS 2008年第S1期564-567,共4页
Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of ba... Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites. 展开更多
关键词 BAMBOO fiber Weibull distribution TENSILE STRENGTH green composite
在线阅读 下载PDF
Effects of carrier gas on densification of porous carbon-carbon composites during chemical vapor infiltration 被引量:3
20
作者 汤中华 邹志强 熊杰 《Journal of Central South University of Technology》 2003年第1期7-12,共6页
The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the r... The densification rate of C/C composites fabricated by directional flow thermal gradient chemical vapor infiltration process from C 3H 6, C 3H 6 N 2 and C 3H 6 H 2 was investigated respectively. The mechanism on the role of carrier gas in chemical vapor infiltration was also discussed. The results shows that whether or not adding N 2 as carrier gas has little influences on the densification behavior of C/C composites with the controlled temperature, the partial pressure of hydrocarbon and the effective residence time of the gas phase remain constant. When the controlled temperature is not less than 1 173 K,using N 2 or H 2 as carrier gas makes pronounced differences in densifying of C/C composites. The average bulk density of C/C composites from C 3H 6 H 2 is eight to ten percent higher than that from C 3H 6 N 2. However, when the controlled temperature is not higher than 1 123 K,the densification rate of C/C composites from C 3H 6 H 2 is much lower than that from C 3H 6 N 2, which implies that effects of carrier gas on densification of C/C composites are closely related to the type of carrier gas and infiltration temperature. At higher temperature, using H 2 as carrier gas is favorable to the densification of C/C composites, while at lower temperature, hydrogen, acting as reactive gas, can inhibit the formation of pyrolytic carbon. 展开更多
关键词 C/C composites CARRIER gas chemical vapor INFILTRATION DENSIFICATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部