Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ...Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.展开更多
This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitor...This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage.展开更多
The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-...The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).展开更多
Objective To explore the correlations of transcranial sonography of substantia nigra(SN-TCS)characteristics with MRI iron deposition on substantia nigra in patients with Parkinson disease(PD).Methods Data of SN-TCS an...Objective To explore the correlations of transcranial sonography of substantia nigra(SN-TCS)characteristics with MRI iron deposition on substantia nigra in patients with Parkinson disease(PD).Methods Data of SN-TCS and craniocerebral MRI in 120 PD patients were retrospectively analyzed.The patients were divided into iron deposition positive group(positive group,n=46)and iron deposition negative group(negative group,n=74)according to quantitative susceptibility mapping(QSM)value.Then parameters of SN-TCS and MRI were compared between groups(both P<0.05),and correlation analysis were also performed.Results The proportion of high echo positive,strong echo area and QSM value of substantia nigra,as well as of hyper-substantia nigra area/midbrain area(S/M)in positive group were all higher than those in negative group(all P<0.001).No significant difference of midbrain area was found between groups(P>0.05).Strong echo area of substantia nigra and S/M based on SN-TCS were both low-medium positively correlated with substantia nigra QSM value showed on MRI(r=0.497,0.529,both P<0.001).Conclusion SN-TCS characteristics of PD patients were correlated with MRI iron deposition on substantia nigra,among which strong echo area and S/M were valuable for evaluating iron deposition on substantia nigra.展开更多
Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared t...Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.展开更多
This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellet...This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.展开更多
基金Project(2006BAJ04A)suppprted by the National Sci-Tech Support Plan,China
文摘Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.
文摘This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage.
基金Project(2018YFC1900403) supported by the National Key Research and Development Program of ChinaProject(CX20210197) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China+1 种基金Project(202206370103) supported by the China Scholarship CouncilProject(2021zzts0115) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).
文摘Objective To explore the correlations of transcranial sonography of substantia nigra(SN-TCS)characteristics with MRI iron deposition on substantia nigra in patients with Parkinson disease(PD).Methods Data of SN-TCS and craniocerebral MRI in 120 PD patients were retrospectively analyzed.The patients were divided into iron deposition positive group(positive group,n=46)and iron deposition negative group(negative group,n=74)according to quantitative susceptibility mapping(QSM)value.Then parameters of SN-TCS and MRI were compared between groups(both P<0.05),and correlation analysis were also performed.Results The proportion of high echo positive,strong echo area and QSM value of substantia nigra,as well as of hyper-substantia nigra area/midbrain area(S/M)in positive group were all higher than those in negative group(all P<0.001).No significant difference of midbrain area was found between groups(P>0.05).Strong echo area of substantia nigra and S/M based on SN-TCS were both low-medium positively correlated with substantia nigra QSM value showed on MRI(r=0.497,0.529,both P<0.001).Conclusion SN-TCS characteristics of PD patients were correlated with MRI iron deposition on substantia nigra,among which strong echo area and S/M were valuable for evaluating iron deposition on substantia nigra.
基金support by the project entitled"Interdisciplinarity in Materials Science and Joining Technologies"from the Department of Production Engineering,Faculty of Technical Sciences Novi Sad,Serbia。
文摘Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.
基金Project(U1960205)supported by the National Natural Science Foundation of ChinaProject(2020ZXA01)supported by China Minmetals Science and Technology Special Plan Foundation。
文摘This study developed a direct reduction route to smelt refractory high-phosphorus iron ores by using hydrogen rich gas.The effects of temperature,gas composition,and gangue on the reduction behavior of iron ore pellets were investigated.Additionally,the migration behavior of phosphorus throughout the reduction-smelting process was examined.The apparent activation energy of the reduction process increased from 64.2 to 194.2 kJ/mol.Increasing the basicity from 0.5 to 0.9 increased the metallization rate from 85.9%to 89.2%.During the reduction process,phosphorus remained in the gangue phase.Carbon deposition and phosphorus removal behaviors of the pellets were investigated and correlated with the gas composition,temperature,pressure,metallization rate,and basicity.Increasing the FeO and CaO contents led to an increase in the liquidus temperature.A high metallization rate of the pellets reduced the phosphorus removal rate but increased the carbon content of the final iron product.Increasing basicity restricted the migration of phosphorus and improved the rate of phosphorus removal.The optimum dephosphorization parameters were separation temperature of 1823 K,basicity of 2.0,and metallization rate of 82.3%.This study presents a high-efficiency and low carbon method for smelting high-phosphorus iron ores.