以聚吡咯(PVP K60)为表面活性剂和碳源,采用流变相法合成了x Li Fe PO4·y Li3V2(PO4)3/C正极材料样品。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对样品形貌和结构进行了测试;采用电池测试仪和电化学工作站对样品电化学性能进行...以聚吡咯(PVP K60)为表面活性剂和碳源,采用流变相法合成了x Li Fe PO4·y Li3V2(PO4)3/C正极材料样品。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对样品形貌和结构进行了测试;采用电池测试仪和电化学工作站对样品电化学性能进行了测试,分析了不同复合比(x:y)对其结构和电化学性能的影响。研究表明:复合材料中存在两相复合与元素掺杂两种效应;当复合比为5∶1时材料的电化学性能最优,在0.1和10 C倍率下放电容量分别达到162.7和104.6 m Ah·g-1,且具有良好的循环稳定性。展开更多
Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanni...Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanning electron microscopy and X-ray diffraction. Results showed that sample synthesized by sol-gel procedure had a relatively smaller particle size compared with the products prepared by solid-state reaction, and had an ample surface. Electrochemical properties were investigated by charge/discharge cycle at 0.1 C rate with lithium as the anode. A high discharge specific capacity 122.42 mAh·g-1 was reached at the first cycle, with hardly capacity fading after 20 cycles.展开更多
文摘以聚吡咯(PVP K60)为表面活性剂和碳源,采用流变相法合成了x Li Fe PO4·y Li3V2(PO4)3/C正极材料样品。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)对样品形貌和结构进行了测试;采用电池测试仪和电化学工作站对样品电化学性能进行了测试,分析了不同复合比(x:y)对其结构和电化学性能的影响。研究表明:复合材料中存在两相复合与元素掺杂两种效应;当复合比为5∶1时材料的电化学性能最优,在0.1和10 C倍率下放电容量分别达到162.7和104.6 m Ah·g-1,且具有良好的循环稳定性。
文摘Lithium-ion battery cathode material Li3V2(PO4)3 was synthesized by sol-gel method using LiOH·H2O, NH4VO3, H3PO4 and citric acid as the raw materials. The samples were investigated by granularity analysis, scanning electron microscopy and X-ray diffraction. Results showed that sample synthesized by sol-gel procedure had a relatively smaller particle size compared with the products prepared by solid-state reaction, and had an ample surface. Electrochemical properties were investigated by charge/discharge cycle at 0.1 C rate with lithium as the anode. A high discharge specific capacity 122.42 mAh·g-1 was reached at the first cycle, with hardly capacity fading after 20 cycles.