Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate posit...Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate positioning method. Currently, 3 methods are available for CDMA wireless positioning: network based, Mobile Station (MS) based, and GpsOne positioning.As these methods are different in location time, accuracy, availability, privacy, and operation cost, they shall be selected according to the actual network conditions. Network structure, information bearer protocols, and transport mode make the basis of a wireless positioning system. They can be implemented in different ways, and some details shall be specified by the operators.展开更多
Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although g...Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.展开更多
This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used...This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.展开更多
文摘Location services not only provide address information, but also locate, monitor and track terminals on a real-time basis. To deliver fast and accurate location services, it is necessary to select an appropriate positioning method. Currently, 3 methods are available for CDMA wireless positioning: network based, Mobile Station (MS) based, and GpsOne positioning.As these methods are different in location time, accuracy, availability, privacy, and operation cost, they shall be selected according to the actual network conditions. Network structure, information bearer protocols, and transport mode make the basis of a wireless positioning system. They can be implemented in different ways, and some details shall be specified by the operators.
基金supported by National Natural Science Foundation of China (No. 62076251)sponsored by IMT-2020(5G) Promotion Group 5G+AI Work Group+3 种基金jointly sponsored by China Academy of Information and Communications TechnologyGuangdong OPPO Mobile Telecommunications Corp., Ltdvivo Mobile Communication Co., LtdHuawei Technologies Co., Ltd
文摘Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.
基金supported by the National Natural Science Foundation of China(Grant no. 61202399,61571063)
文摘This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.