Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an...In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.展开更多
This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-...This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-fire directing units.By employing Intercalated Coupling Structures(ICS)between the folded dipole resonator and the ground plane,the resonant frequency of the antenna is shifted to lower frequencies,thereby significantly enhancing the operational bandwidth.Furthermore,the inclusion of three end-fire directing units positioned in front of the folded dipole oscillator substantially improves the antenna's end-fire gain.The designed antenna exhibits a relative impedance bandwidth of 46%(ranging from 1.36 to 2.18 GHz),with a peak gain of 7.33 dBi at the 2100 MHz 5G-R frequency band.The overall dimensions of the antenna are 0.31λ_(L)×0.39λ_(L)×0.008λ_(L),whereλ_(L)denotes the wavelength at the lowest frequency.The proposed antenna demonstrates a broad operational bandwidth,rendering it suitable for 5G-R mobile communications.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when ...In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.展开更多
A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loa...A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loaded with lumped resistors, a dielectric substrate, and a metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz 18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.展开更多
Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hy...Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hybrid precoding has been widely considered for THz communication.However,accurate wideband channel estimation,which is essential for hybrid precoding,is challenging in THz massive MIMO systems.The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect.In this paper,we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation in THz massive MIMO systems.Specifically,a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect.Based on the analysis,we define a series of index sets called as beam split patterns,which are proved to have a one-to-one match to different physical channel directions.Inspired by this one-to-one match,we propose to estimate the physical channel direction by exploiting beam split patterns at first.Then,the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window.This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction.The above estimation procedure will be repeated path by path until all path components are estimated.Finally,the wideband channel can be recovered by calculating the elements on the total sparse channel support at all subcarriers.The proposed scheme exploits the wideband channel property implied by the beam split effect,i.e.,beam split pattern,which can significantly improve the channel estimation accuracy.Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.展开更多
In this paper, we consider a novel two-dimensional(2D) geometry-based stochastic model(GBSM) for multiple-input multiple-output(MIMO) vehicle-to-vehicle(V2V) wideband fading channels. The proposed model employs the co...In this paper, we consider a novel two-dimensional(2D) geometry-based stochastic model(GBSM) for multiple-input multiple-output(MIMO) vehicle-to-vehicle(V2V) wideband fading channels. The proposed model employs the combination of a two-ring model and a multiple confocal ellipses model, where the signal is sum of the line-of-sight(Lo S) component, single-bounced(SB) rays, and double-bounced(DB) rays. Based on the reference model, we derive some expressions of channel statistical properties, including space-time correlation function(STCF), Doppler spectral power density(DPSD), envelope level crossing rate(LCR) and average fade duration(AFD). In addition, corresponding deterministic and stochastic simulation models are developed based on the reference model. Moreover, we compare the statistical properties of the reference model and the two simulation models in different scenarios and investigate the impact of different vehicular traffic densities(VTDs) on the channel statistical properties of the proposed model. Finally, the great agreement between simulation models and the reference model demonstrates not only the utility of simulation models, but also the correctness of theoretical derivations and simulations.展开更多
In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined a...In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined as a variable in the closedform equations provided by the microstrip bandpass filter.It can be extended over a wide range only by changing the characteristic impedances of the structure.Different from the other wideband MNs,the extension of bandwidth does not increase the complexity of the structure(order n is fixed).In addition,based on the bandwidth-extended structure,the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure.The theoretical analysis of the MN and the design flow of the PA are provided in this design.The fabricated bandpass filtering PA can support almost one-octave bandwidth(2-3.8 GHz),covering the two 5G bands(n41 and n78).The drain efficiency of 47%-60%and output power higher than 40 dBm are measured.Good frequency selectivity in S-parameter measurements can be observed.展开更多
We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact tha...We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact that the reflection phases of cross-polarized waves are linear in quite a wide band. This facilitates the design of wideband parabolic reflection phase profile. As an example, we design two reflective focusing metasurfaces with one- and two-dimensional in-plane parabolic reflection phase profiles based on elliptical split ring resonators(ESRRs). Both the simulation and experiment verify the wideband focusing performance in 10.0–22.0 GHz of the flat reflectors. Due to the wide operating band, such reflectors have important application values in communication, detection, measurement, imaging, etc.展开更多
A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results sho...A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.展开更多
Tracking moving wideband sound sources is one of the most challenging issues in the acoustic array signal processing which is based on the direction of arrival(DOA) estimation. Compressive sensing(CS) is a recent theo...Tracking moving wideband sound sources is one of the most challenging issues in the acoustic array signal processing which is based on the direction of arrival(DOA) estimation. Compressive sensing(CS) is a recent theory exploring the signal sparsity representation, which has been proved to be superior for the DOA estimation. However, the spatial aliasing and the offset at endfire are the main obstacles for CS applied in the wideband DOA estimation. We propose a particle filter based compressive sensing method for tracking moving wideband sound sources. First, the initial DOA estimates are obtained by wideband CS algorithms. Then, the real sources are approximated by a set of particles with different weights assigned. The kernel density estimator is used as the likelihood function of particle filter. We present the results for both uniform and random linear array. Simulation results show that the spatial aliasing is disappeared and the offset at endfire is reduced. We show that the proposed method can achieve satisfactory tracking performance regardless of using uniform or random linear array.展开更多
In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical...In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical three-cylinder is proposed. Non-line-of-sight(NLOS) propagation condition is assumed in amplify-and-forward(AF) cooperative networks from the source mobile station(S) to the destination mobile station(D) via the mobile relay station(R). We extend the proposed narrowband model to wideband and also introduce the carrier frequency and bandwidth into the model. To avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions, the channel is realized first. By using the realized channel matrix, the channel properties are further investigated.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metall...In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic(EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification,the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices.展开更多
In this paper, we present the design of multilayer microwave absorbers comprised of Co Fe alloy nano-particles and nano-flakes as fillers. The thickness of the unite layer is optimized by using the Genetic Algorithm. ...In this paper, we present the design of multilayer microwave absorbers comprised of Co Fe alloy nano-particles and nano-flakes as fillers. The thickness of the unite layer is optimized by using the Genetic Algorithm. Efficient microwave absorptions over a wide frequency band and a range of incident angles are achieved by using multilayer absorbers. We show that the absorbers are effective not only for a planar surface but also for arbitrarily shaped objects as well.展开更多
A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a br...A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30°from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both fullwave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range.展开更多
In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity subs...In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity substrate in the middle, and a probe feeding structure at the bottom. By digging an annular slot in the designated area of the square dielectric sheet, the resonant frequency of fundamental TE111 mode can be effectively increased to be close to the high-order TE131 mode. The two modes can be finally merged together, yielding a wide impedance bandwidth of16.6%. Most importantly, the combination of the two modes is done on the premise of a fixed antenna planar size, which can be very compact and suitable for beam-scanning applications. A probe feeding structure is used to excite the DRA, making the antenna simple and practical to be integrated with other RF circuits. For verification, antenna prototypes with singlefeed linear polarization and differential-feed dual polarization were fabricated and measured. Reasonable agreement between the measured and simulated results is observed.展开更多
An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ...An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ideal linearity while FL-PLL retains the linearity and provides radio frequency.The system block diagrams were showed and the timing relationships of the components were provided.Two important considerations of the system,wideband loop and wideband voltage control oscillator(VCO),were discussed;meanwhile,after analyzing the considerations,corresponding solutions were presented.Measurement results show that the generated 2560MHz to 2960MHz chirp reaches a high FM linearity of 0.003%.展开更多
An improved compact ultra-wideband(UWB)microstrip antenna with metamaterials is proposed.The total size is slightly reduced and the measured impedance bandwidth operates from 3.84 to 22.77 GHz for a return loss of les...An improved compact ultra-wideband(UWB)microstrip antenna with metamaterials is proposed.The total size is slightly reduced and the measured impedance bandwidth operates from 3.84 to 22.77 GHz for a return loss of less than-10 dB.Compared with the original patch antenna,the bandwidth of this antenna is about six times broader.Moreover,the antenna has an average gain of 6.2 dB,which is 1.2 dB larger than the original one.Both strong radiation in the horizontal direction and practical characteristics are observed.Thus,this antenna would have some specific applications for UWB wireless communications in the future.展开更多
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
文摘In mmWave massive multiple-input multiple-output(MIMO)communication systems,the extension of low-complexity narrowband precoding schemes to be operated on wideband systems under frequency-selective channels remains an important challenge at the current time.This paper investigates a low complexity wideband hybrid precoding scheme for mmWave massive MIMO multicarrier systems under a single-user,fully-connected hybrid architecture.We show that the radio frequency(RF)precoding/combining vectors can be directly derived from the eigenvectors of the optimal fully-digital covariance matrix over all subcarriers in order to maximize the sum rate of spectral efficiency.We also suggest a new method that iteratively reduces the residual error between the covariance matrix and the sum of products of precoding matrices over all the subcarriers to improve the performance in the case where the number of RF chains is higher than the number of streams.The results of the simulation show that the proposed schemes’complexity is low compared to the present methods,and their performance can almost reach the upper bound achieved by the optimal full-baseband design.
基金supported in part by the National Natural Science Foundation of China(Nos.U2268201,62271419)in part by the State Key Laboratory of Rail Transit Engineering Informatization(FSDI)under Grant 2022KY50ZD(ZNXT)-01.
文摘This paper presents a miniaturized wideband high-gain microstrip end-fire antenna specifically designed for 5G-R communication applications.The antenna structure comprises a microstrip folded dipole resonator and end-fire directing units.By employing Intercalated Coupling Structures(ICS)between the folded dipole resonator and the ground plane,the resonant frequency of the antenna is shifted to lower frequencies,thereby significantly enhancing the operational bandwidth.Furthermore,the inclusion of three end-fire directing units positioned in front of the folded dipole oscillator substantially improves the antenna's end-fire gain.The designed antenna exhibits a relative impedance bandwidth of 46%(ranging from 1.36 to 2.18 GHz),with a peak gain of 7.33 dBi at the 2100 MHz 5G-R frequency band.The overall dimensions of the antenna are 0.31λ_(L)×0.39λ_(L)×0.008λ_(L),whereλ_(L)denotes the wavelength at the lowest frequency.The proposed antenna demonstrates a broad operational bandwidth,rendering it suitable for 5G-R mobile communications.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
基金supported by the National Natural Science Foundation of China(No.61571146)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘In order to solve the cross-channel signal problem caused by the uniform channelized wideband digital receiver when processing wideband signal and the problem that the sensitivity of the system greatly decreases when the bandwidth of wideband digital receiver increases,which both decrease the wideband radar signal detection performance,a new wideband digital receiver based on the modulated wideband converter(MWC)discrete compressed sampling structure and an energy detection method based on the new receiver are proposed.Firstly,the proposed receiver utilizes periodic pseudo-random sequences to mix wideband signals with baseband and other sub-bands.Then the mixed signals are low-pass filtered and downsampled to obtain the baseband compressed sampling data,which can increase the sensitivity of the system.Meanwhile,the cross-channel signal will all appear in any subbands,so the cross-channel signal problem can be solved easily by processing the baseband compressed sampling data.Secondly,we establish the signal detection model and formulate the criterion of the energy detection method.And we directly utilize the baseband compressed sampling data to carry out signal detection without signal reconstruction,which decreases the complexity of the algorithm and reduces the computational burden.Finally,simulation experiments demonstrate the effectiveness of the proposed receiver and show that the proposed signal detection method is effective in low signal-to-noise ratio(SNR)compared with the conventional energy detection and the probability of detection increases significantly when SNR increases.
基金Project supported by the National Natural Science Foundation of China(Grant No.51207060)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20090142110004)
文摘A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U-shaped structured magnetic resonators loaded with lumped resistors, a dielectric substrate, and a metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz 18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)the National Natural Science Foundation of China(Grant No.62031019)the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256.
文摘Terahertz(THz)communication is considered to be a promising technology for future 6G network.To overcome the severe attenuation and relieve the high power consumption,massive multipleinput multiple-output(MIMO)with hybrid precoding has been widely considered for THz communication.However,accurate wideband channel estimation,which is essential for hybrid precoding,is challenging in THz massive MIMO systems.The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect.In this paper,we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation in THz massive MIMO systems.Specifically,a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect.Based on the analysis,we define a series of index sets called as beam split patterns,which are proved to have a one-to-one match to different physical channel directions.Inspired by this one-to-one match,we propose to estimate the physical channel direction by exploiting beam split patterns at first.Then,the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window.This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction.The above estimation procedure will be repeated path by path until all path components are estimated.Finally,the wideband channel can be recovered by calculating the elements on the total sparse channel support at all subcarriers.The proposed scheme exploits the wideband channel property implied by the beam split effect,i.e.,beam split pattern,which can significantly improve the channel estimation accuracy.Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
基金supported in part by the project from the ZTEthe National Natural Science Foundation of China under Grant 61622101 and Grant 61571020National Science and Technology Major Project under Grant 2018ZX03001031
文摘In this paper, we consider a novel two-dimensional(2D) geometry-based stochastic model(GBSM) for multiple-input multiple-output(MIMO) vehicle-to-vehicle(V2V) wideband fading channels. The proposed model employs the combination of a two-ring model and a multiple confocal ellipses model, where the signal is sum of the line-of-sight(Lo S) component, single-bounced(SB) rays, and double-bounced(DB) rays. Based on the reference model, we derive some expressions of channel statistical properties, including space-time correlation function(STCF), Doppler spectral power density(DPSD), envelope level crossing rate(LCR) and average fade duration(AFD). In addition, corresponding deterministic and stochastic simulation models are developed based on the reference model. Moreover, we compare the statistical properties of the reference model and the two simulation models in different scenarios and investigate the impact of different vehicular traffic densities(VTDs) on the channel statistical properties of the proposed model. Finally, the great agreement between simulation models and the reference model demonstrates not only the utility of simulation models, but also the correctness of theoretical derivations and simulations.
基金supported by National Natural Science Foundations of China (No.61971052 and No.U20A20203)Key Research and Development Project of Guangdong Province (2020B0101080001)
文摘In this paper,a 5G wideband power amplifier(PA)with bandpass filtering response is synthesized using a bandwidth-extended bandpass filter as the matching network(MN).In this structure,the bandwidth(θ_(C))is defined as a variable in the closedform equations provided by the microstrip bandpass filter.It can be extended over a wide range only by changing the characteristic impedances of the structure.Different from the other wideband MNs,the extension of bandwidth does not increase the complexity of the structure(order n is fixed).In addition,based on the bandwidth-extended structure,the wideband design of bandpass filtering PA is not limited to the fixed bandwidth of the specific filter structure.The theoretical analysis of the MN and the design flow of the PA are provided in this design.The fabricated bandpass filtering PA can support almost one-octave bandwidth(2-3.8 GHz),covering the two 5G bands(n41 and n78).The drain efficiency of 47%-60%and output power higher than 40 dBm are measured.Good frequency selectivity in S-parameter measurements can be observed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331005,11274389,and 11204378)the Postdoctoral Science Foundation of China(Grant Nos.2013M532131 and 2014M552451)the Foundation of the Author of National Excellent Doctoral Dissertation of China(Gran No.201242)
文摘We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band,the polarization conversion mechanism is introduced into the reflector design, based on the fact that the reflection phases of cross-polarized waves are linear in quite a wide band. This facilitates the design of wideband parabolic reflection phase profile. As an example, we design two reflective focusing metasurfaces with one- and two-dimensional in-plane parabolic reflection phase profiles based on elliptical split ring resonators(ESRRs). Both the simulation and experiment verify the wideband focusing performance in 10.0–22.0 GHz of the flat reflectors. Due to the wide operating band, such reflectors have important application values in communication, detection, measurement, imaging, etc.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61271066, 61101058, and 61107086) and the Science and Technology Committee of Tianjin Province, China (Grant No. 11JCYBJC01100).
文摘A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.
基金supported by the NFSC Grants 51375385 and 51675425Natural Science Basic Research Plan in Shaanxi Province of China Grants 2016JZ013
文摘Tracking moving wideband sound sources is one of the most challenging issues in the acoustic array signal processing which is based on the direction of arrival(DOA) estimation. Compressive sensing(CS) is a recent theory exploring the signal sparsity representation, which has been proved to be superior for the DOA estimation. However, the spatial aliasing and the offset at endfire are the main obstacles for CS applied in the wideband DOA estimation. We propose a particle filter based compressive sensing method for tracking moving wideband sound sources. First, the initial DOA estimates are obtained by wideband CS algorithms. Then, the real sources are approximated by a set of particles with different weights assigned. The kernel density estimator is used as the likelihood function of particle filter. We present the results for both uniform and random linear array. Simulation results show that the spatial aliasing is disappeared and the offset at endfire is reduced. We show that the proposed method can achieve satisfactory tracking performance regardless of using uniform or random linear array.
基金supported by the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2016D09)National Nature Science Foundation of China (NSFC) under grant No. 61372051
文摘In this paper, a three-dimensional(3D) geometry- based stochastic scattering model(GBSSM) for wideband multi-input multi-output(MIMO) vehicle-to-vehicle(V2V) relay-based cooperative fading channel based on geometrical three-cylinder is proposed. Non-line-of-sight(NLOS) propagation condition is assumed in amplify-and-forward(AF) cooperative networks from the source mobile station(S) to the destination mobile station(D) via the mobile relay station(R). We extend the proposed narrowband model to wideband and also introduce the carrier frequency and bandwidth into the model. To avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions, the channel is realized first. By using the realized channel matrix, the channel properties are further investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61471387,61271250,and 61571460)
文摘In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic(EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification,the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices.
文摘In this paper, we present the design of multilayer microwave absorbers comprised of Co Fe alloy nano-particles and nano-flakes as fillers. The thickness of the unite layer is optimized by using the Genetic Algorithm. Efficient microwave absorptions over a wide frequency band and a range of incident angles are achieved by using multilayer absorbers. We show that the absorbers are effective not only for a planar surface but also for arbitrarily shaped objects as well.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372034 and 61501499)
文摘A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30°from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both fullwave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range.
基金supported by the National Natural Science Foundation of China under Grant 62071256National Natural Science Foundation of Jiangsu under Grant BK20201438+1 种基金supported by State Key Laboratory of Millimeter Waves (Nanjing) and Nantong Research Institute for Advanced Communication Technologies (Nantong)sponsored by Qing Lan Project of Jiangsu Province。
文摘In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity substrate in the middle, and a probe feeding structure at the bottom. By digging an annular slot in the designated area of the square dielectric sheet, the resonant frequency of fundamental TE111 mode can be effectively increased to be close to the high-order TE131 mode. The two modes can be finally merged together, yielding a wide impedance bandwidth of16.6%. Most importantly, the combination of the two modes is done on the premise of a fixed antenna planar size, which can be very compact and suitable for beam-scanning applications. A probe feeding structure is used to excite the DRA, making the antenna simple and practical to be integrated with other RF circuits. For verification, antenna prototypes with singlefeed linear polarization and differential-feed dual polarization were fabricated and measured. Reasonable agreement between the measured and simulated results is observed.
基金Supported by the Fund of National Defense Industry Innovative Team (231)
文摘An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ideal linearity while FL-PLL retains the linearity and provides radio frequency.The system block diagrams were showed and the timing relationships of the components were provided.Two important considerations of the system,wideband loop and wideband voltage control oscillator(VCO),were discussed;meanwhile,after analyzing the considerations,corresponding solutions were presented.Measurement results show that the generated 2560MHz to 2960MHz chirp reaches a high FM linearity of 0.003%.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61172115,60872029the High-Tech Research and Development Program of China(No 2008AA01Z206)the Aeronautics Foundation of China(No 20100180003).
文摘An improved compact ultra-wideband(UWB)microstrip antenna with metamaterials is proposed.The total size is slightly reduced and the measured impedance bandwidth operates from 3.84 to 22.77 GHz for a return loss of less than-10 dB.Compared with the original patch antenna,the bandwidth of this antenna is about six times broader.Moreover,the antenna has an average gain of 6.2 dB,which is 1.2 dB larger than the original one.Both strong radiation in the horizontal direction and practical characteristics are observed.Thus,this antenna would have some specific applications for UWB wireless communications in the future.