The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 conc...The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.展开更多
Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding ...Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.展开更多
基金Project(2017YFC0210500)supported by the National Key Technology R&D Program of ChinaProject(2017ACA092)supported by the Major Projects of Technical Innovation in Hubei Province,China
文摘The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.
基金Project(51404121)supported by the National Natural Science Foundation of ChinaProject(KKSY201452041)supported by Yunnan Provincal Personnel Training Funds for Kunming University of Science and Technology,China
文摘Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.