期刊文献+
共找到250篇文章
< 1 2 13 >
每页显示 20 50 100
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
1
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
2
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system clustering
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
3
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
4
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
5
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
6
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
面向定性与定量指标的轻量化高空飞艇效能评估方法 被引量:1
7
作者 袁彰求 杨朝旭 荣海军 《系统工程与电子技术》 北大核心 2025年第3期817-826,共10页
高空飞艇具有驻空时间长、能源消耗低等优点,在面对信息监测和长期通信方面有很高的应用价值。综合考虑飞艇平台与载荷在指标上的耦合关系,提出一种面向定性与定量指标的轻量化高空飞艇效能评估方法。首先,运用模糊综合评估法将无法直... 高空飞艇具有驻空时间长、能源消耗低等优点,在面对信息监测和长期通信方面有很高的应用价值。综合考虑飞艇平台与载荷在指标上的耦合关系,提出一种面向定性与定量指标的轻量化高空飞艇效能评估方法。首先,运用模糊综合评估法将无法直接用于数据分析的定性指标转化为定量指标,实现多类型指标的完全量化。其次,通过基于模糊C均值聚类的最大信息系数相关性分析选择与关注指标相关的指标,构建轻量评估体系。再次,提出专家排序评价的主客观组合赋权法,基于轻量评估体系计算权重获得效能评估结果。最后,通过实例验证所提效能评估方法的有效性。所提出的轻量化高空飞艇效能评估方法可为高空飞艇的设计和优化提供数据支持,缩短研发周期、降低经济成本。 展开更多
关键词 效能评估 模糊综合评估法 模糊C均值聚类 最大信息系数 组合赋权法
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
8
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy C Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
基于不平衡数据处理与加权软投票异质集成的农户贷款违约风险预测
9
作者 曹伟萍 张劲松 《计算机应用与软件》 北大核心 2025年第8期71-79,共9页
构建农户违约预测模型对深化农业信贷风险管理具有重要意义。针对违约数据不平衡问题,提出一种基于指标优化和不平衡数据处理的加权软投票异质集成模型。利用支持向量机递归特征消除法选取关键指标,结合模糊C均值聚类和SMOTE技术构建平... 构建农户违约预测模型对深化农业信贷风险管理具有重要意义。针对违约数据不平衡问题,提出一种基于指标优化和不平衡数据处理的加权软投票异质集成模型。利用支持向量机递归特征消除法选取关键指标,结合模糊C均值聚类和SMOTE技术构建平衡训练样本。集成六种基学习器,通过验证集确定软投票权重,融合各模型预测结果,获得最终预测。实验表明,该模型相比单一模型、同质和其他异质集成模型具有更高精度。线性支持向量机的系数权重分析显示,农业生产性收入、未偿还贷款等指标与违约风险正相关,金融产品关注度等指标与违约风险负相关。 展开更多
关键词 农户贷款 违约预测 递归消除 模糊C均值聚类 加权软投票
在线阅读 下载PDF
一种带有Fuzzy聚类方法的ABC分析
10
作者 程承运 《葛洲坝水电工程学院学报》 1995年第3期88-92,共5页
提出一种带有Fuzzy聚类方法的ABC分析,广泛适用于需要考虑对象的多方面因素,而且某些因素并非数量时的ABC分类。由计算广义加权海明距离得到的结果使传统的ABC分析法具有新的面貌,便于人们加强对象的控制和管理。
关键词 ABC 模糊聚类 广义加权
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
11
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
12
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
基于组合赋权的地铁渗漏模糊综合评价体系及应用
13
作者 张明聚 项扬 +2 位作者 李鹏飞 何海健 徐晴 《隧道建设(中英文)》 CSCD 北大核心 2024年第S2期62-73,共12页
为解决目前渗漏病害统计缺乏统一标准、统计结果难以量化的问题,通过层次分析法,建立地铁既有线车站及隧道区间的渗漏病害评价体系。基于实测数据及相关规范,划分出各病害分级评价标准。通过采用综合层次分析法、序关系分析法、熵权法和... 为解决目前渗漏病害统计缺乏统一标准、统计结果难以量化的问题,通过层次分析法,建立地铁既有线车站及隧道区间的渗漏病害评价体系。基于实测数据及相关规范,划分出各病害分级评价标准。通过采用综合层次分析法、序关系分析法、熵权法和CRITIC法的组合赋权法计算评价指标的权重,经计算可得渗漏级别为最主要权重。建立模糊综合评价体系实现对各类型渗漏病害的评价,为实际工程渗漏治理方案提供参考。通过系统聚类法实现对渗漏车站及区间的分级,为病害治理的优先级提供参考。最后通过工程实例对本研究进行验证,证明该评价体系具有应用价值。 展开更多
关键词 地铁渗漏水 组合赋权 模糊综合评价 系统聚类法
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:1
14
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 K-MEANS聚类 模糊判别 Critic赋权法
在线阅读 下载PDF
跟驰工况下考虑风险分布的驾驶风格分类 被引量:1
15
作者 姜平 范虹慧 +2 位作者 黄鹤 石琴 周宇 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第11期1514-1518,共5页
车辆跟驰工况下,为通过驾驶场景中各因素的风险分布研究驾驶员特性,实现车路交互下的驾驶风格分类,文章提出一种基于改进的模糊综合评价法的驾驶风格分类方法。通过驾驶模拟器采集试验数据,并将车辆行驶参数和安全势场作为分类的特征参... 车辆跟驰工况下,为通过驾驶场景中各因素的风险分布研究驾驶员特性,实现车路交互下的驾驶风格分类,文章提出一种基于改进的模糊综合评价法的驾驶风格分类方法。通过驾驶模拟器采集试验数据,并将车辆行驶参数和安全势场作为分类的特征参数;使用组合权重法对模糊综合评价法的权重集进行改进,从而对各特征参数赋予相应的权重,再通过改进的模糊综合评价法将驾驶风格分为冷静型、普通型、激进型3类;最后通过K-means聚类算法验证上述方法的合理性。改进的模糊综合评价法分类结果与K-means聚类结果的对比表明,两者的差异率仅为2%,且当聚类簇数为3时,轮廓系数高达0.685,即与无监督学习算法相同。研究结果表明,使用该文模糊综合评价法可以实现对驾驶风格的有效分类。 展开更多
关键词 驾驶风格分类 安全势场 模糊综合评价法 组合权重法 K-MEANS聚类算法
在线阅读 下载PDF
地空协同场景下加权模糊聚类用户簇划分方法 被引量:1
16
作者 黄天宇 李远兴 +2 位作者 陈昊 郭紫佳 魏明军 《计算机应用》 CSCD 北大核心 2024年第5期1555-1561,共7页
为了解决应急通信场景下使用无人机作为空中基站进行辅助通信时涉及的无人机基站部署策略中的用户簇划分问题,在兼顾无人机基站性能和用户体验的条件下,提出一种基于特征加权的模糊聚类(Improved FCM)算法。首先,根据每个无人机基站的... 为了解决应急通信场景下使用无人机作为空中基站进行辅助通信时涉及的无人机基站部署策略中的用户簇划分问题,在兼顾无人机基站性能和用户体验的条件下,提出一种基于特征加权的模糊聚类(Improved FCM)算法。首先,根据每个无人机基站的信号覆盖范围和最大服务用户数量的性能约束,针对随机分布条件下的用户簇在划分过程中算法计算量大不易收敛的问题,提出一种基于距离加权的特征加权节点数据投影算法;其次,针对同一用户处于多个簇有效范围内时用户划分的有效性和无人机基站资源的最大化利用问题,提出一种基于用户位置和无人机基站负载均衡的价值加权算法。实验结果表明,所提方法充分满足无人机基站的服务性能约束,且与几何分形法(GFA)、谱聚类(Sp-C)等算法相比,特征加权模糊聚类算法获得的平均负载率和覆盖比是最优的,分别达到了0.774和0.0263,因此,该算法可为应急通信场景下的用户簇划分问题提供一种可行的解决方案。 展开更多
关键词 地空协同 应急通信 无人机辅助通信 无人机基站部署 用户簇划分 特征加权 模糊C均值聚类
在线阅读 下载PDF
FCM测站定权的LAGEOS-2卫星精密定轨影响分析
17
作者 王军傲 钟世明 +3 位作者 张杰 周冲冲 郭钊 路润民 《大地测量与地球动力学》 CSCD 北大核心 2024年第7期684-689,共6页
由于卫星激光测距(satellite laser ranging, SLR)台站的测距精度和稳定性存在差异,精密定轨中需要对不同性能的台站赋予不同权重。本文将模糊C均值(fuzzy C-means, FCM)聚类定权应用于LAGEOS-2精密定轨,并比较原始测站定权和FCM定权对... 由于卫星激光测距(satellite laser ranging, SLR)台站的测距精度和稳定性存在差异,精密定轨中需要对不同性能的台站赋予不同权重。本文将模糊C均值(fuzzy C-means, FCM)聚类定权应用于LAGEOS-2精密定轨,并比较原始测站定权和FCM定权对轨道精度的影响。结果表明:1)相较于原始测站定权,FCM定权更能反映各SLR台站的性能,提高定轨精度和观测值数量;2)对于ILRS四个质量分析机构,原始测站定权下JCET发布的质量报告在定轨精度上略优于其他中心,采用FCM定权后,以4个机构发布的质量报告进行定轨的结果在同一水平,轨道精度为4.83~4.86 cm。 展开更多
关键词 卫星激光测距 模糊C均值聚类定权 卫星精密定轨
在线阅读 下载PDF
基于FCM的快速模糊聚类算法研究 被引量:9
18
作者 匡平 朱清新 陈旭东 《电子测量与仪器学报》 CSCD 2007年第2期15-20,共6页
为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结... 为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结果;然后,将得到的分割结果作为FCM算法的初值再次利用FCM算法以获得最终的分割结果。理论证明和相关实验表明,fFCM不仅能获得和原FCM算法等价的分类结果,还具有良好的运算性能,具有广泛的适用性。 展开更多
关键词 模糊C均值聚类 weighted fuzzy c-means(WFCM) 加权样本 图像分割
在线阅读 下载PDF
模糊c-均值聚类算法中加权指数m的研究 被引量:159
19
作者 高新波 裴继红 谢维信 《电子学报》 EI CAS CSCD 北大核心 2000年第4期80-83,共4页
加权指数m是模糊c 均值 (FCM)聚类算法中的一个重要参数 .本文从FCM算法出发研究了m对聚类分析的影响 ,m的最佳选取方法及其在聚类有效性中的应用三个问题 .实验结果表明 :m不合适的取值将严重影响算法的性能 ;在实际应用中m的最佳取值... 加权指数m是模糊c 均值 (FCM)聚类算法中的一个重要参数 .本文从FCM算法出发研究了m对聚类分析的影响 ,m的最佳选取方法及其在聚类有效性中的应用三个问题 .实验结果表明 :m不合适的取值将严重影响算法的性能 ;在实际应用中m的最佳取值范围为 [1 5 ,2 5 ],这与Pal的实验结论相一致 ;另外基于最优加权指数m 展开更多
关键词 加权指数 模糊聚类 模式识别
在线阅读 下载PDF
基于特征加权的模糊聚类新算法 被引量:116
20
作者 李洁 高新波 焦李成 《电子学报》 EI CAS CSCD 北大核心 2006年第1期89-92,共4页
在聚类分析中,针对不同类型的数据,人们设计了模糊k-均值、k-mode以及k-原型算法以分别适合于数值型、类属型和混合型数据.但无论上述哪种方法都假定待分析样本的各维特征对分类的贡献相同.为了考虑样本矢量中各维特征对模式分类的不同... 在聚类分析中,针对不同类型的数据,人们设计了模糊k-均值、k-mode以及k-原型算法以分别适合于数值型、类属型和混合型数据.但无论上述哪种方法都假定待分析样本的各维特征对分类的贡献相同.为了考虑样本矢量中各维特征对模式分类的不同影响,本文提出一种基于特征加权的模糊聚类新算法,通过ReliefF算法对特征进行加权选择,不仅能够将模糊k-均值、k-mode以及k-原型算法合而为一,同时使样本的分类效果更好,而且还可以分析各维特征对分类的贡献程度.对各种实际数据集的测试实验结果均显示出新算法的优良性能. 展开更多
关键词 聚类分析 模糊聚类 数值特征 类属特征 特征加权
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部