A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard...A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.展开更多
The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal...The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
Due to the advantages of low cost,fast response and pollution resistance,digital hydraulic pump/motor can replace conventional variable hydraulic pump/motor in many application fields.However,digital hydraulic compone...Due to the advantages of low cost,fast response and pollution resistance,digital hydraulic pump/motor can replace conventional variable hydraulic pump/motor in many application fields.However,digital hydraulic components produce large hydraulic impact at variable moments,which will shorten the service life of mechanical components.Through the simulation analysis of the variable process of digital pump/motor,it is found that the discontinuous flow caused by displacement step changes is the fundamental cause of hydraulic impact.The data analysis results of experimental tests are in good agreement with the simulation analysis results.In view of hydraulic secondary components,a variable control method based on dual-mode operating characteristics is proposed.The TOPSIS algorithm is used to give comprehensive evaluation of the displacement control results after this method.The results show that the control quality of digital pump/motor after adopting the control method has been effectively improved,with an average improvement of about 40%.展开更多
基金the National Natural Science Foundation of China (70631003)the Hefei University of Technology Foundation (071102F).
文摘A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.
基金the National Natural Science Foundation of China (60773065).
文摘The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.
基金Project(51405183)supported by the National Natural Science Foundation of China。
文摘Due to the advantages of low cost,fast response and pollution resistance,digital hydraulic pump/motor can replace conventional variable hydraulic pump/motor in many application fields.However,digital hydraulic components produce large hydraulic impact at variable moments,which will shorten the service life of mechanical components.Through the simulation analysis of the variable process of digital pump/motor,it is found that the discontinuous flow caused by displacement step changes is the fundamental cause of hydraulic impact.The data analysis results of experimental tests are in good agreement with the simulation analysis results.In view of hydraulic secondary components,a variable control method based on dual-mode operating characteristics is proposed.The TOPSIS algorithm is used to give comprehensive evaluation of the displacement control results after this method.The results show that the control quality of digital pump/motor after adopting the control method has been effectively improved,with an average improvement of about 40%.