Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensiona...Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensional(3D) weighting reconstruction algorithm for cone-beam CT. The 3D weighting function is added in the back-projection process to reduce the axial density drop and improve the accuracy of FDK algorithm. Having a simple structure, the algorithm can be implemented easily without rebinning the native cone-beam data into coneparallel beam data. Performance of the algorithm is evaluated using two computer simulations and a real industrial component, and the results show that the algorithm achieves better performance in reduction of axial intensity drop artifacts and has a wide range of application.展开更多
The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A a...The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm.展开更多
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.
基金supported by the National Natural Science Foundation of China(Nos.51675437 and 51605389)Aeronautical Science Fund of China(No.2014ZE53059)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM5003)Fundamental Research Funds for the Central Universities of China(No.3102014KYJD022)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Nos.Z2016075 and Z2016081)
文摘Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensional(3D) weighting reconstruction algorithm for cone-beam CT. The 3D weighting function is added in the back-projection process to reduce the axial density drop and improve the accuracy of FDK algorithm. Having a simple structure, the algorithm can be implemented easily without rebinning the native cone-beam data into coneparallel beam data. Performance of the algorithm is evaluated using two computer simulations and a real industrial component, and the results show that the algorithm achieves better performance in reduction of axial intensity drop artifacts and has a wide range of application.
基金supported by the National Natural Science Foundation of China(Nos.62265010,62061024)Gansu Province Science and Technology Plan(No.23YFGA0062)Gansu Province Innovation Fund(No.2022A-215)。
文摘The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm.