期刊文献+
共找到4,887篇文章
< 1 2 245 >
每页显示 20 50 100
Surface Pressure Loading Technology of Ship Structures 被引量:1
1
作者 DAI Ze-yu WEI Peng-yu +3 位作者 CHEN Xiao-ping JIANG Ze CHEN Zhe TANG Qin 《船舶力学》 EI CSCD 北大核心 2024年第12期1940-1952,共13页
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co... A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system. 展开更多
关键词 surface pressure load loading system ship structure strength test flexible bladder
在线阅读 下载PDF
Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance 被引量:11
2
作者 雷明锋 林大涌 +3 位作者 杨伟超 施成华 彭立敏 黄娟 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3312-3321,共10页
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t... Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance. 展开更多
关键词 shallow-bias tunnels with small spacing failure mechanism loading characteristics model test
在线阅读 下载PDF
Crack propagation and damage evolution of metallic cylindrical shells under internal explosive loading
3
作者 Yusong Luo Weibing Li +2 位作者 Junbao Li Wenbin Li Xiaoming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期133-146,共14页
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ... This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes. 展开更多
关键词 Internal explosive loading Failure criterion Crack propagation Damage evolution Freeze-recovery test
在线阅读 下载PDF
Investigation on the Ice Load on a Cylinder Vertically Breaking through Model Ice Sheet from Underneath
4
作者 ZHAO Wei−hang TIAN Yu−kui +3 位作者 JI Shao−peng GANG Xu−hao YU Chao−ge KONG Shuai 《船舶力学》 北大核心 2025年第6期964-975,共12页
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e... Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters. 展开更多
关键词 CYLINDER model test failure mode crack propagation ice load numerical modeling
在线阅读 下载PDF
Brazilian disc test study on tensile strength-weakening effect of high pre-loaded red sandstone under dynamic disturbance 被引量:20
5
作者 GONG Feng-qiang WU Wu-xing ZHANG Le 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2899-2913,共15页
Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the ... Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range. 展开更多
关键词 SPALLING deep surrounding rock strength-weakening effect pre-static load dynamic disturbance tensile failure Brazilian disc test
在线阅读 下载PDF
Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition 被引量:11
6
作者 SI Xue-feng HUANG Lin-qi +2 位作者 GONG Feng-qiang LIU Xi-ling LI Xi-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2914-2929,共16页
To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specime... To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases. 展开更多
关键词 ROCKBURST loading rate deep circular tunnel true-triaxial test V-shaped notch
在线阅读 下载PDF
Experimental investigation on damage evolution behaviour of a granitic rock under loading and unloading 被引量:10
7
作者 戴兵 赵国彦 +1 位作者 H.KONIETZKY P.L.P.WASANTHA 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1213-1225,共13页
In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of ... In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of rock structures. In this paper, we investigate the damage evolution characteristics of a granitic rock during loading and unloading after a series of triaxial experiments performed at different confining pressures. The axial stress-axial strain variations of the tested specimens revealed that the specimens undergoing unloading fail with a lower axial strain compared to the specimens failed purely by loading. Higher confining pressures were observed to exacerbate the difference. Volumetric strain versus axial strain curves indicated that the curves reverse the trend with the beginning of major damage of specimens. We suggest here a new form of equation to describe the secant modulus variation of brittle rocks against the axial stress for the unloading process. Failure mechanisms of tested specimens showed two distinct patterns, namely, specimens under pure loading failed with a single distinct shear fracture while for the unloading case specimens displayed multiple intersecting fractures. In addition, analysis of the evolution of dissipation and elastic energy during deformation of the specimens under loading and unloading conditions showed differentiable characteristics. Moreover, we evaluated the variations of two damage indices defined based on the energy dissipation and secant modulus evolution during deformation and observed that both of them satisfactorily distinguish key stages of damage evolution. 展开更多
关键词 damage evolution loading and unloading granitic rock triaxial testing
在线阅读 下载PDF
Destructive field tests on mobilization of end resistance of cast-in-situ bored piles 被引量:4
8
作者 刘念武 张忠苗 +1 位作者 张乾青 房凯 《Journal of Central South University》 SCIE EI CAS 2013年第4期1071-1078,共8页
A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the... A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris. 展开更多
关键词 static load test SETTLEMENT POST-GROUTING end resistance socketed depth
在线阅读 下载PDF
Theoretical and experimental analyses of casing collapsing strength under non-uniform loading 被引量:4
9
作者 林元华 邓宽海 +4 位作者 曾德智 朱红钧 朱达江 戚兴 黄韵 《Journal of Central South University》 SCIE EI CAS 2014年第9期3470-3478,共9页
Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loadi... Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading(NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL. 展开更多
关键词 non-uniform loading mechanical model collapse testing collapse strength
在线阅读 下载PDF
Effects of different pull-out loading rates on mechanical behaviors and acoustic emission responses of fully grouted bolts 被引量:5
10
作者 DU Yun-lou FENG Guo-rui +2 位作者 KANG Hong-pu ZHANG Yu-jiang ZHANG Xi-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2052-2066,共15页
Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of... Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts. 展开更多
关键词 fully grouted bolts pull-out test loading rate mechanical behavior AE response failure characteristic
在线阅读 下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:8
11
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
在线阅读 下载PDF
Failure of rock under dynamic compressive loading 被引量:5
12
作者 周子龙 李地元 +1 位作者 马国伟 李建春 《Journal of Central South University of Technology》 EI 2008年第3期339-343,共5页
Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe... Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces. 展开更多
关键词 Split Hopkinson Pressure Bar(SHPB) test failure mechanism dynamic compressive loading crack propagation damage evolution
在线阅读 下载PDF
Effects of axial cyclic loading at constant confining pressures on deformational characteristics of anisotropic argillite 被引量:2
13
作者 张久长 周苏华 +1 位作者 方理刚 许湘华 《Journal of Central South University》 SCIE EI CAS 2013年第3期799-811,共13页
Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transv... Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy. 展开更多
关键词 anisotropic argillite coupled elasto-plasticity cyclic loading tests elastic parameters plastic strain
在线阅读 下载PDF
Study on Loading Ability of Straw Bale 被引量:1
14
作者 LIU Kun JIANG Enchen DUAN Jieli 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第1期73-77,共5页
The loading ability of straw bale was tested by Electronical Testing Machine. The linear regression equations were proposed between failure density and loading ability, and failure density and compressing energy. Base... The loading ability of straw bale was tested by Electronical Testing Machine. The linear regression equations were proposed between failure density and loading ability, and failure density and compressing energy. Based on an exponent model, the testing coefficients of straw bale were estimated using Levenberg-Marquardt Method. The results of test showed that the relation between failure density and loading ability and compressing energy was linear in the phase of high density. The loading ability of straw bale could meet the building bill. 展开更多
关键词 straw bale testing coefficients failure density loading ability
在线阅读 下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
15
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance Combined blast and fragment loading Impact test Finite element simulation
在线阅读 下载PDF
Similarity Criterion and Scale Effect for Ship Distortion Model Under Combined Loads
16
作者 ZHANG Yi-long WEI Peng-yu +3 位作者 DAI Ze-yu WANG Lian ZENG Qing-bo TANG Qin 《船舶力学》 EI CSCD 北大核心 2024年第12期1880-1890,共11页
For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out s... For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures. 展开更多
关键词 distortion model combined load similarity criteria scale effect ultimate strength test
在线阅读 下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
17
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
在线阅读 下载PDF
桩承式土工袋垫层加筋地基二维模型试验 被引量:1
18
作者 刘斯宏 韩雪蕾 +1 位作者 李博文 鲁洋 《东南大学学报(自然科学版)》 北大核心 2025年第1期117-123,共7页
在地基加固中,土工袋与桩基础均可起到提高地基承载力,减小不均匀沉降的作用,但将两者联合用于地基处理缺乏深入研究。设计了可模拟桩承式地基差异性沉降的试验装置,开展了一系列二维模型试验。通过数字图像相关技术(DIC)获取了模型地... 在地基加固中,土工袋与桩基础均可起到提高地基承载力,减小不均匀沉降的作用,但将两者联合用于地基处理缺乏深入研究。设计了可模拟桩承式地基差异性沉降的试验装置,开展了一系列二维模型试验。通过数字图像相关技术(DIC)获取了模型地基位移场,利用称重传感器精确地测量了地基荷载变化,分析了土工袋垫层厚度、桩顶埋深、桩间距和地基表面荷载对地基变形模式及荷载传递规律的影响。结果表明:桩顶土工袋可扩大桩体作用范围,土工袋长度与桩宽的较优比例为2∶1;相较于桩承式地基,土工袋垫层可起到协调地基内部变形的作用;土工袋垫层厚度及桩顶埋深的增加对减小地基表面不均匀沉降有利;在地基表面施加荷载的过程中,土工袋垫层可使更多荷载传递至桩顶。 展开更多
关键词 土工袋垫层 模型试验 变形模式 荷载传递
在线阅读 下载PDF
基于动态贝叶斯网络的地下道路行车风险评估 被引量:1
19
作者 尚婷 郭明洋 +1 位作者 唐伯明 徐钰婷 《交通运输系统工程与信息》 北大核心 2025年第3期232-245,共14页
为探究地下道路不同交通标志信息密度下驾驶员行车风险动态演变规律,本文以驾驶员视觉负荷为表征指标,利用自然驾驶试验采集驾驶员眼动数据,基于动态贝叶斯网络理论构建驾驶员行车风险评价模型。基于香农信息熵量化交通标志信息量,构建... 为探究地下道路不同交通标志信息密度下驾驶员行车风险动态演变规律,本文以驾驶员视觉负荷为表征指标,利用自然驾驶试验采集驾驶员眼动数据,基于动态贝叶斯网络理论构建驾驶员行车风险评价模型。基于香农信息熵量化交通标志信息量,构建考虑交通标志信息量呈现速率的交通标志信息密度模型。选取解放碑地下道路4种不同交通标志信息密度的路段开展实车试验,提取并分析不同路段的驾驶员视觉特性指标。引入动态贝叶斯网络理论动态概率预测及推理评估驾驶员行车风险,由诊断推理、敏感性分析和影响链分析得到影响驾驶员行车风险的关键风险因素。结果表明:驾驶员注视持续时间、水平/垂直扫视幅度、水平/垂直扫视速度及瞳孔面积变化速率与交通标志信息密度呈正相关,眨眼频率与交通标志信息密度呈负相关;驾驶员行车风险发生概率随时间呈动态变化,先上升,后趋于平缓,且随交通标志信息密度的增加,4个路段的风险概率分别稳定于22.6%,35.7%,40.1%和43.8%;驾驶员行车风险受注视状态等环节风险因素影响较大,包括注视持续时间、瞳孔面积变化速率和眨眼频率等关键风险因素。 展开更多
关键词 交通工程 视觉负荷 动态贝叶斯网络 地下道路 实车试验 风险评估
在线阅读 下载PDF
六边形断面超高层建筑风荷载研究 被引量:2
20
作者 王磊 尹伊 +2 位作者 陈凯 唐意 郝玮 《应用力学学报》 北大核心 2025年第1期164-173,共10页
为了研究六边形断面超高层建筑的静力和动力风荷载,开展了一系列刚性测压模型和多自由度气弹模型风洞试验,测量了刚性模型表面风压和气弹模型风致位移。对于静力风荷载,分析了体型系数和静风力系数的变化规律,建立了顺风向平均基底弯矩... 为了研究六边形断面超高层建筑的静力和动力风荷载,开展了一系列刚性测压模型和多自由度气弹模型风洞试验,测量了刚性模型表面风压和气弹模型风致位移。对于静力风荷载,分析了体型系数和静风力系数的变化规律,建立了顺风向平均基底弯矩系数和平均阻力系数的经验公式。对于动力风荷载,分析了横风向荷载功率谱和均方根基底弯矩,建立了横风向广义风荷载功率谱和归一化均方根基底弯矩系数的经验公式。最后,基于多自由度气弹模型的风致振动试验结果,验证了经验公式的精确性。 展开更多
关键词 超高层建筑 六边形断面 风荷载 风洞试验
在线阅读 下载PDF
上一页 1 2 245 下一页 到第
使用帮助 返回顶部