As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present ...The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness...Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems.展开更多
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
基金This project was supported by the National Defense Pre-Research Foundation of China
文摘The basic concepts and models of weapon-target assignment (WTA) are introduced and the mathematical nature of the WTA models is also analyzed. A systematic survey of research on WTA problem is provided. The present research on WTA is focused on models and algorithms. In the research on models of WTA, the static WTA models are mainly studied and the dynamic WTA models are not fully studied in deed. In the research on algorithms of WTA, the intelligent algorithms are often used to solve the WTA problem. The small scale of static WTA problems has been solved very well, however, the large scale of dynamic WTA problems has not been solved effectively so far. Finally, the characteristics of dynamic WTA are analyzed and directions for the future research on dynamic WTA are discussed.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金supported by the Fundamental Research Funds for the Central Universities(NZ2013306)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11 0203)
文摘Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems.