Abstract The main purpose of this article is to prove a collection of new nxea point theorems for (ws)-compact and so-called 1-set weakly contractive operators under Leray- Schauder boundary condition. We also intro...Abstract The main purpose of this article is to prove a collection of new nxea point theorems for (ws)-compact and so-called 1-set weakly contractive operators under Leray- Schauder boundary condition. We also introduce the concept of semi-closed operator at the origin and obtain a series of new fixed point theorems for such class of operators. As consequences, we get new fixed point existence for (ws)-compact (in particular nonexpansive) self mappings unbounded closed convex subset of Banach spaces. The main condition in our results is formulated in terms of axiomatic measures of weak noncompactness. Later on, we give an application to generalized Hammerstein type integral equations.展开更多
The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and mul...The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and multi-valued relation, is presented with a rescaled barrier height and width. Our results show that the finite size makes the current–phase relation deviate a little bit from the cosine form for the soliton solution in the limit of a vanishing barrier, and the periodic boundary condition selects only the plane wave solution in the case of high barrier. The reason for multi-valued current–phase relation is given by investigating the behavior of soliton solution.展开更多
文摘Abstract The main purpose of this article is to prove a collection of new nxea point theorems for (ws)-compact and so-called 1-set weakly contractive operators under Leray- Schauder boundary condition. We also introduce the concept of semi-closed operator at the origin and obtain a series of new fixed point theorems for such class of operators. As consequences, we get new fixed point existence for (ws)-compact (in particular nonexpansive) self mappings unbounded closed convex subset of Banach spaces. The main condition in our results is formulated in terms of axiomatic measures of weak noncompactness. Later on, we give an application to generalized Hammerstein type integral equations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874247)the National Key Research and Development Program of China(Grant Nos.2017YFA0304500 and 2017YFA0304203)+1 种基金PCSIRT,China(Grant No.IRT-17R70)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,China(Grant No.KF201703)
文摘The current–phase relations of a ring-trapped Bose–Einstein condensate interrupted by a rotating rectangular barrier are extensively investigated with an analytical solution. A current–phase diagram, single and multi-valued relation, is presented with a rescaled barrier height and width. Our results show that the finite size makes the current–phase relation deviate a little bit from the cosine form for the soliton solution in the limit of a vanishing barrier, and the periodic boundary condition selects only the plane wave solution in the case of high barrier. The reason for multi-valued current–phase relation is given by investigating the behavior of soliton solution.