为了满足航空用机电作动器(EMA,Electro-Mechanical Actuator)高可靠性和大范围调速的要求,充分利用具有双通道容错结构的无刷直流电动机(BLDCM,Brushless DC Motor)系统特殊的结构和换相特点,通过分析两个通道中功率电路直流母线电流...为了满足航空用机电作动器(EMA,Electro-Mechanical Actuator)高可靠性和大范围调速的要求,充分利用具有双通道容错结构的无刷直流电动机(BLDCM,Brushless DC Motor)系统特殊的结构和换相特点,通过分析两个通道中功率电路直流母线电流波形的突变特征,提出一种采用小波变换(WT,Wavelet Transform)与层次聚类算法(HCA,Hierarchical Clustering Algorithm)相结合的故障检测与诊断方法.并通过实际电机系统试验验证了方法的可行性与正确性.试验结果表明,这种方法对电机断相故障、逆变器功率管断路故障具有明显的检测与识别效果,而且不受转速、负载和噪声的影响.信号特征提取算法简单,故障识别方法可靠性高,无需额外设备,易于应用,具有很强的实际操作性.展开更多
本文提出了一种可靠的图像去噪算法,基于观察图像是期望图像叠加了不规则噪声的假设,用有限高斯混合分布(FNM)描述期望图像分解小波系数(WC)的先验分布,用隐马尔可夫模型(HMM)描述同一方向不同分解级之间的小波系数的依赖关系,采用Baye...本文提出了一种可靠的图像去噪算法,基于观察图像是期望图像叠加了不规则噪声的假设,用有限高斯混合分布(FNM)描述期望图像分解小波系数(WC)的先验分布,用隐马尔可夫模型(HMM)描述同一方向不同分解级之间的小波系数的依赖关系,采用Bayes准则,根据期望图像的后验分布(以观测图像为条件)所对应的HMM模型的条件概率,用EM(expectation maximization)优化算法,获得MAP(maximization a posteriori)准则下的去噪图像。针对银基触头材料表面形貌去噪对几种算法作定性比较,并对去噪性能给出定量分析,仿真结果表明,此方法有效去除噪声的同时,能保留原始图像的细节信息。展开更多
文摘本文提出了一种可靠的图像去噪算法,基于观察图像是期望图像叠加了不规则噪声的假设,用有限高斯混合分布(FNM)描述期望图像分解小波系数(WC)的先验分布,用隐马尔可夫模型(HMM)描述同一方向不同分解级之间的小波系数的依赖关系,采用Bayes准则,根据期望图像的后验分布(以观测图像为条件)所对应的HMM模型的条件概率,用EM(expectation maximization)优化算法,获得MAP(maximization a posteriori)准则下的去噪图像。针对银基触头材料表面形貌去噪对几种算法作定性比较,并对去噪性能给出定量分析,仿真结果表明,此方法有效去除噪声的同时,能保留原始图像的细节信息。